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a  b  s  t  r  a  c  t

Virtual  sensing  technology  is  crucial  for  monitoring  product  quality  when  real-time  measurement  is  not
available.  To deal  with  both  strong  nonlinearity  and  time-varying  dynamics  of  industrial  processes,  we
propose  a  novel  locally  weighted  kernel  PLS  (LW-KPLS)  based  on  sparse  nonlinear  features  in this  research.
Unlike  the  conventional  locally  weighted  PLS  (LW-PLS),  the  proposed  method  weights  the  training  sam-
ples by  using  sparse  kernel  feature  characterization  factors  (SKFCFs),  which  take  account  of the  strength  of
nonlinear  dependency  between  samples  in the  Hilbert  feature  space.  By  integrating  the nonlinear  features
into  the  locally  weighted  regression  framework,  LW-KPLS  not  only  can  cope  with  the time-varying  char-
acteristics  but  also  is  more  suitable  for highly  nonlinear  processes.  The  proposed  method  was  validated
through  a numerical  example,  a  penicillin  fermentation  process,  and a real  industrial  cleaning  process
for  residual  drug  substances.  The results  have  demonstrated  that  the  proposed  LW-KPLS  outperforms  the
conventional  PLS, KPLS,  LW-PLS,  and  eLW-KPLS  in the prediction  performance.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In modern industrial processes, it is important to monitor the
product quality and other key variables in order to assure both
the product quality and the process safety and reduce energy
and material consumption. Hardware analyzers have practical
problems such as time-consuming maintenance, need for calibra-
tion, aged deterioration, insufficient accuracy, long dead-time, and
slow dynamics as clarified through the questionnaire survey in
Japan (Kano and Fujiwara, 2013). Therefore soft-sensors have been
widely used over the past decades for quality control and process
monitoring. Among them, data-driven soft-sensors have attracted
increasing attention because a massive amount of process data is
becoming available in industry. Soft-sensors have been successfully
applied to various industrial processes. Multiple linear regression
(MLR), principal component regression (PCR), and partial least
squares (PLS) regression are the most popular modeling approaches
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(Kadlec et al., 2009; Kano and Ogawa, 2010). However, these lin-
ear regression methods are based on a linearity assumption, which
limits their applications to nonlinear industrial processes.

To handle the nonlinearity, a series of nonlinear regression
methods such as nonlinear PLS (NLPLS) (Wilson et al., 1997), arti-
ficial neural networks (Zupan and Gasteiger, 1991), and kernel
regression methods such as kernel PLS (KPLS) (Rosipal and Trejo,
2001; Zhang et al., 2010) have been developed. Among these meth-
ods, kernel methods avoid nonlinear optimization through the
introduction of the nonlinear transformation kernel function. KPLS
maps data points from the original space to the Hilbert feature
space, where a linear PLS model is developed. According to the
Covers theorem (Rosipal and Trejo, 2001), the nonlinear relation-
ship among variables in the original space is most likely to be
linear after high-dimensional nonlinear mapping. Thus, KPLS can
efficiently capture the nonlinearity and improve prediction per-
formance. KPLS has been successfully applied to many industrial
processes (Zhang et al., 2010).

Generally, industrial processes are time-varying due to changes
of process characteristics and operating conditions. For example,
equipment characteristics are changed by catalyst deactivation,
scale adhesion, and equipment aging in chemical processes (Kano
and Fujiwara, 2013). Such changes in process characteristics cause
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accuracy deterioration of soft-sensors, and the model mainte-
nance is the most important issue concerning soft-sensors in the
process industry (Kano and Ogawa, 2010). Hence, it is necessary
to update soft-sensors automatically. Recursive methods such as
recursive PLS and recursive support vector regression (SVR) have
been developed to adapt a prediction model to a new operating
condition recursively (Helland et al., 1992). The recursive meth-
ods update the covariance matrices when a new data becomes
available, but they cannot deal with abrupt changes (Kano and
Fujiwara, 2013). Alternatively, just-in-time (JIT) modeling methods
have been developed to cope with changes in process character-
istics as well as nonlinearity, and they have been widely used
for virtual sensing and process monitoring (Fujiwara et al., 2009;
Ge and Song, 2010; Hirai and Kano, 2015; Kim et al., 2356; Xie
et al., 2014; Zhang et al., 2015). In JIT modeling, a local model
is built from a historical dataset using the most relevant sam-
ples around one query sample, which is a target sample, when
an estimated output value corresponding to the query is required.
Thus, it can trace operating conditions and cope with the process
nonlinearity. Locally weighted regression (LWR) (Shigemori et al.,
2011) and locally weighted PLS (LW-PLS) are JIT modeling methods
that have successful industrial applications (Hirai and Kano, 2015;
Kim et al., 2011; Nakagawa et al., 2012). In LWR  and LW-PLS, the
prediction performance is mainly dependent on the definition of
similarity or weights of samples. To design prediction models, a
variety of weights have been investigated, which generally can be
classified into distance-based weights (Leung et al., 2004), distance-
and-angle-based weights (Ge and Song, 2008), correlation-based
weights (Fujiwara et al., 2009), covariance-based weights (Hazama
and Kano, 2015), and regression-coefficient-based weights (Kim
et al., 2011; Shigemori et al., 2011). To build good local models, it is
crucial to appropriately set the weights according to the strength
of nonlinearity. However, nonlinearity may  change as a function
of operating condition or time. An adaptive version of LW-PLS was
proposed, which adaptively determine the weights according to
the strength of nonlinearity between each input variable and an
output variable around a query (Kim et al., 2013b). However, most
local regression methods cannot cope with changes in nonlinear-
ity. Consequently, they do not always function well. In addition,
input features used for the conventional local regression methods
are still original process variables, and the nonlinearity of regres-
sion models only rests in the different treatment of samples, i.e.
local weighting. Hence, the conventional methods do not neces-
sarily meet the demand for the prediction accuracy especially for
highly nonlinear industrial processes.

To solve these issues, a novel locally weighted kernel partial
least squares (LW-KPLS) regression method based on sparse non-
linear features is proposed in this work. Unlike the conventional
LW-PLS, the proposed LW-KPLS method uses sparse kernel feature
characterization factors (SKFCFs) to weight the training samples.
SKFCFs are derived from a instance-wise kernelized elastic net
learning (IW-KENL) model and describe nonlinear dependency
between the query and training samples in the Hilbert feature
space. SKFCFs are essential to understand which samples are impor-
tant to construct a locally weighted model for the current query, and
which samples provide irrelevant or redundant information and
can be eliminated. Thus SKFCFs are useful to weight the training
samples and construct a LW-KPLS model. Furthermore, by inte-
grating the nonlinear features into the locally weighted regression
framework, the proposed LW-KPLS not only is more suitable for
highly nonlinear processes than the conventional LW-PLS but also
can cope with time-varying characteristics.

The rest of this paper is organized as follows. Section 2 gives
a brief introduction of LW-PLS and kernelized elastic net. Then,
locally weighted kernel PLS based on sparse nonlinear features is
presented in Section 3. In Section 4, the proposed method is applied

to a numerical example, a penicillin fermentation process, and a
real industrial cleaning process for residual drug substances, and
its application results are compared with PLS, KPLS, LW-PLS, and
eLW-KPLS. The conclusions of this work are presented in Section 5.

2. Existing methods

2.1. Locally weighted PLS (LW-PLS)

LW-PLS (Kim et al., 2011) is one kind of JIT modeling methods,
in which PLS is used to construct local regression models based on
the similarity between the query and historical samples. Here the
basic algorithm of LW-PLS is briefly explained.

The nth samples (n = 1, 2, . . .,  N) of input and output variables
are denoted by

xn = [xn1, xn2, . . .,  xnM]T (1)

yn = [yn1, yn2, . . .,  ynL]T (2)

where M and L denote the numbers of input and output variables,
respectively. X ∈ RN×M and Y ∈ RN×L are the input and output
variable matrices whose nth row are xT

n and yT
n . N is the number of

the samples.
In LW-PLS, data matrices X and Y are stored in a database.

When an output estimation is required for a query sample xq, the
similarity ωn between xq and xn is calculated, then a local PLS
model is constructed by weighting samples with a similarity matrix

 ̋ ∈ RN×N defined by

 ̋ = diag(ω1, ω2, . . .,  ωN) (3)

where diag(•) represents a diagonal matrix.
The output estimate ŷq corresponding to the query sample xq is

calculated as follows.

(1) Determine the number of latent variables R, and set r = 1.
(2) Calculate the weight matrix ˝.
(3) Calculate Xr, Yr, and xq,r

Xr = X − 1N[x̄1, x̄2, . . ., x̄M] (4)

Y r = Y − 1N[ȳ1, ȳ2, . . ., ȳL] (5)

xq,r = xq − [x̄1, x̄2, . . ., x̄M]T (6)

x̄m =
∑N

n=1ωnxnm∑N
n=1ωn

(7)

ȳl =
∑N

n=1ωnynl∑N
n=1ωn

(8)

where 1N ∈ RN is a vector of ones.
(4) Derive the rth latent variable of X

tr = Xrwr (9)

where wr is the eigenvector of XT
r ˝Y rYT

r ˝Xr , which corre-
sponds to the maximum eigenvalue.

(5) Derive the rth loading vector of X and the regression coefficient
vector.

pr = XT
r ˝tr

tT
r ˝tr

(10)

qr = YT
r ˝tr

tT
r ˝tr

(11)

(6) Derive the rth latent variable of xq.

tq,r = xT
q,rwr (12)
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