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a  b  s  t  r  a  c  t

As  a proof  of  concept  the properties  of path-following  methods  are studied  for  multi-objective  opti-
mization  problems  involving  dynamic  systems  (also  called  multi-objective  dynamic  optimization  or
multi-objective  optimal  control  problems),  which  have  never  been  presented  before.  Two  case  studies
with two  objectives  are  considered  to  cover  convex,  as  well  as  non-convex  trade-off  curves  or  Pareto  sets.
In  order  for  the  method  to be applicable,  the  infinite  dimensional  dynamic  problems  have  to  be  discretized
and  scalarization  parameters  have  to be  introduced,  which  leads  to  large-scale  parametric  nonlinear  opti-
mization  problems.  For  both  the chemical  tubular  reactor  and  the  fed-batch  bioreactor  case  study  it is
found  that  a path-following  continuation  approach  is  able  to compute  the  Pareto  fronts  accurately  and
efficiently.  A  branch  switching  technique  is  required  whenever  a constraint  switches  from  active  to  inac-
tive or  vice  versa.  When  dealing  with  non-convex  problems,  a technique  for  detecting  inflection  points
is  required.  Simple  switching  techniques  are  suggested  and  have  been  tested  successfully.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Multi-objective or multi-criterion optimization deals with prob-
lems of the form:

minx

(
J1(x), . . .,  Jq(x)

)
,

s.t. hi(x) = 0, i = 1, . . .,  n,

gj(x) ≤ 0, j = 1, . . .,  m,

(1)

in which x are the optimization variables, Jk the objective func-
tions, hi the equality constraints and gj the inequality constraints.
Most decisions of everyday life can be regarded as multi-objective
optimization problems, because in most cases our decisions are
trade-offs between two or more possibilities. These possibilities,
or objectives, can very well be contradictory (Collette and Siarry,
2003). Solutions of these problems are always trade-offs between
the objectives. When comparing the solutions, improvement of one
objective is only possible at the cost of deterioration of another
objective. Such solutions are called Pareto optimal. The main dif-
ference between single-objective and multi-objective optimization

∗ Corresponding author.
E-mail address: kesslert@mpi-magdeburg.mpg.de (T. Keßler).

is, that there is not only one optimal solution, but a set of optimal
solutions (Deb, 2014). This set is called Pareto front. In practice,
however, the user or decision maker can only use one of these
solutions. The user’s choice depends on other, higher level infor-
mation (Deb, 2014). Therefore it is the main goal of multi-objective
optimization to generate many solutions, in order to give the user
an accurate overview about what can be chosen from (Deb, 2014).
To achieve this goal, Pareto fronts are usually calculated by (i)
turning the multi-objective optimization problem into a sequence
of single-objective optimization problems or (ii) exploiting evolu-
tionary methods in which a set of candidate solutions gradually
evolves to the Pareto set (Miettinen, 1999; Deb, 2002). For meth-
ods from the former class, various scalarization techniques, for
example weighted sum method, hyperboxing scheme and normal-
ized normal constraint, are known in literature (Marler and Arora,
2004; Logist et al., 2009; Bortz et al., 2014). Typical challenges
these methods face, are ensuring a homogeneous distribution of
the computed points on the Pareto front, as well as capturing non-
convex Pareto fronts. An alternative approach are path-following
methods resulting from numerical continuation theory, which have
been suggested in literature (Rakowska et al., 1991; Lundberg and
Poore, 1993; Seferlis and Hrymak, 1996; Hillermeier, 2001; Gudat
et al., 2007; Harada et al., 2007; Potschka et al., 2011; Ringkamp
et al., 2012) but so far hardly have been applied to large-scale
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Nomenclature

Theoretical sections
ˇ0 Fritz–John parameter
ε tolerance
ε1, ε2 disturbance
� curve length parameter
L Lagrangian
�, ϕ Lagrange multipliers
� Fritz–John state
ω continuation parameter
� adaptation parameter
	 line through solution space

 tangent vector
x̃ augmented state vector
ϒ step size
∗  arc-length
� number of iteration steps

 slope of line through solution space
e unit vector
F vector of system equations
g inequality constraint
h equality constraint
J cost functional
p auxiliary scalar equation
s slack variable
w weighting factor
w∗ branch switching point
x state vector
y solution of algebraic system

Case study 1
 ̨ dimensionless reacton constant

 ̌ dimensionless heat transfer parameter
� dimensionless activation energy
ı dimensionless heat of reaction
c reactant concentration, mol/l
cf feed concentration, mol/l
K scaling factor
L length of reactor, m
N number of grid points
Tf feed temperature, K
Tw jacket temperature, K
Tmax maximum reactor temperature, K
Tmin minimum reactor temperature, K
Tw,max maximum jacket temperature, K
Tw,min minimum jacket temperature, K
v flow velocity, m/s
x1 dimensionless reactant concentration
x2 dimensionless reactor temperature
z dimensionless spatial coordinate

Case study 2
� growth rate, 1/h
� production rate, g/g h
� substrate consumption rate, g/g h
cs substrate concentration, g/l
cs,F feed substrate concentration, g/l
N number of grid points
t time coordinate, h
te terminal time, h
u volumetric rate of the feed stream, l/h
x1 biomass, g
x2 substrate, g
x3 product (lysine), g
x4 fermenter volume, l

optimization problems resulting from the multi-objective opti-
mization of dynamic systems. Path-following methods are able to
easily calculate non-convex Pareto fronts. Further, they can be com-
bined with established predictor corrector continuation methods
from bifurcation analysis to solve bi-criterial optimization prob-
lems with a large number of optimization variables (Thompson
Hale, 2005; Pérez, 2014). One of the major challenges of this
approach is the occurrence of bifurcations due to constraints (Rao
and Papalambros, 1989a,b; Guddat et al., 1990), which has been
tackled recently (Martin et al., 2016), but not yet solved for large-
scale problems.

The idea discussed in the following is an extension of the pre-
dictor corrector continuation algorithm reported in the conference
paper (Keßler et al., 2016). It is used as a path-following method
for large-scale bi-criterial optimization problems. The application
to dynamic models illustrates the feasibility of the method for
multi-objective optimization problems with differential equations
as constraints, i.e. multi-objective dynamic optimization or multi-
objective optimal control problems. Normally such problems are
solved using (i) direct optimal control approaches using gradient
based methods such as the sequential approach/single shooting
and simultaneous approach/multiple shooting (Abo-Ghander et al.,
2010; Logist et al., 2012) and (ii) stochastic approaches (Bhaskar
et al., 2000; Mitra et al., 2004; Patel and Padhiyar, 2016).

2. Theoretical background

This section introduces the theoretical background of the meth-
ods used to produce the results of this work. We  will explain
the weighted sum scalarization method for solving multi-objective
optimization problems and outline its drawbacks and we will show
how predictor corrector continuation algorithms work and how
they can be used to overcome these drawbacks.

2.1. Weighted sum method

A traditional approach in multi-objective optimization is the
weighted sum method (Marler and Arora, 2004). In this approach,
the multi-objective optimization problem is reformulated, such
that the objectives are combined in a weighted sum, which then
gets minimized, to find a Pareto optimal solution (Marler and Arora,
2004)

minxJ(x) =
q∑

i=1

wk · Jk(x),

s.t. hi(x) = 0, i = 1, . . .,  n

gj(x) ≤ 0, j = 1, . . .,  m,

(2)

with wk being the weight or scalarization parameter of the kth
objective (Deb, 2014; Das and Dennis, 1997).

2.2. Optimality conditions

The numerical continuation algorithm outlined in Section 2.3
is able to solve algebraic systems. In order for this method to be
applicable to optimization problems, we  need to transform the
optimization problem into an algebraic problem. To do this, we
make use of optimality conditions.

The most commonly used necessary conditions for an
optimum of a constrained optimization problem are called
Karush–Kuhn–Tucker (KKT) conditions.

Inequality constraints can be transformed into equality con-
straints, by introducing so called slack variables sj (Boyd and
Vandenberghe, 2004). That is possible, because gj(x) ≤ 0 only holds,
if there is a sj ∈ R, such that gj(x) + s2

j
= 0. If the inequality
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