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a  b  s  t  r  a  c  t

Process  monitoring  of chemical  plants  relies  on two  steps:  discriminating  anomalies  (fault  detection)
and  characterizing  them  (fault  identification).  This  work  proposes  a combined  Generative  Topographic
Mapping  (GTM)  and  Graph  Theory  (GT)  approach.  GTM  highlights  system  features,  reducing  variable
dimensionality  and  providing  a  strategy  for calculating  similarity  between  samples.  GT then  clusters  them
using networks,  discriminating  normal  and  anomalous  entries.  Because  of  biased  normal  and  anomalous
labeling,  however,  the methodology  proposed  is unsupervised,  meaning  that  labels  are  inexistent.  Three
case studies  were  considered:  a simulation  data  set,  Tennessee  Eastman  process  and  an industrial  data
set. Principal  Component  Analysis  (PCA),  dynamic  PCA  and  kernel  PCA  indexes  (Q  and  T2) alongside  GTM
and  GT independent  monitoring  methodologies  were  used  for comparison,  considering  supervised  and
unsupervised  approaches.  For  the  industrial  scenario,  soft  sensors  were  used  for  assessing  discrimina-
tion  performance.  The  proposed  method,  while  unsupervised,  discriminated  normal  states  similarly  to
supervised  strategies,  justifying  its development.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Highlighting important characteristics and features of a pro-
cess is fundamental for all sorts of applications. Machine learning
techniques are particularly interesting when tackling those issues,
due to their non-phenomenological approach, which relies on the
process data available. For this work, the main focus is process
monitoring, more specifically fault identification and process data
visualization. It is important not only to distinguish between nor-
mal  and abnormal states in the plant, but also to be able to visualize
how process data can be reconciled to reveal different characteris-
tics of the process.

Evidently, anomalies have several sources, such as hidden plant
states, disturbances and equipment malfunction, to name a few.
Different faults lead to different approaches and applications.
Database maintenance, for example, aims to only store relevant
data by creating from a training data set a detection model that
can identify normal and abnormal samples for future online eval-
uation. Such technique can, then, improve soft sensors’ (Kaneko
et al., 2011) accuracy, by only indicating reliable samples for model
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generation. Process control applications also benefit greatly from it,
where developments in alarm technologies and hierarchical con-
trol systems can ensure better response to anomalous scenarios.

This work relies mainly on Multivariate Statistical Process Con-
trol (MSPC) and Monitoring (MSPM) (Kourti, 2005; Bersimis et al.,
2007; Prasad et al., 1995; Nicolotti and Carotti, 2006) aspects. Our
concern is to evaluate and visualize how variables and samples
interact with the process and with each other. By doing so, we
hope to achieve a more complete understanding of the process,
where data discrimination is more objective and meaningful. One
could expect us to consider a more conventional supervised tac-
tic, where a previously known stable state is used as reference,
with samples flagged as normal or anomaly (Chiang et al., 2000;
Russell et al., 2000). In many cases, though, labels might not be
openly available, reliable or even existent. Biases naturally arise
in any analysis, leading to labeling errors. Outdated methodolo-
gies might not be representing the process in its entirety, or data
labeling might have been poorly assessed. This leads to consid-
ering unsupervised methodologies for monitoring, which would
provide a fresh perspective on data. By not relying on any labels,
only the relationship between variables and their evolution over
time is used for data discrimination.

When developing unsupervised methodologies, however, sev-
eral factors have to be taken into account. Primarily, the quality of
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the information available is fundamental for the development of
trustworthy models. Real data sets struggle with redundant infor-
mation and noise, which might hide the true relation between
different features and, therefore, different samples. Dimensional-
ity reduction, thus, identifies regions with similar characteristics
and filters redundant information from data. One of the most
widespread methods for process monitoring is Principal Com-
ponent Analysis (PCA) (Jolliffe, 2002), which assesses linear
correlation between different process variables, so to reduce
the dimensionality of highly correlated variables. Its use is so
widespread that numerous PCA-based MSPMs  were developed,
such as dynamic PCA (DPCA) (Russell et al., 2000), recursive PCA (Li
et al., 2000), distributed PCA (Ge and Song, 2013) and maximum-
likelihood PCA (Choi et al., 2005). Extensions were developed to
overcome its linear nature and to deal with non-linear systems,
such as kernel PCA (Lee et al., 2004). Other methods also tackle
non-linearity from scratch, such as Support Vector Machines (SVM)
(Kittiwachana et al., 2010), Gaussian Mixture Models (GMM)  (Yu
and Qin, 2008), Generative Topographic Mapping (GTM) (Bishop
et al., 1998), and even the use of inferential models (Masuda et al.,
2014).

Focusing on strategies developed so far for fault identification,
the main element explored in this work builds upon a previous
development (Escobar et al., 2015), whose focus is on GTM and
Graph Theory. GTM’s non-linear and probabilistic nature leads to a
better handling of complex and realistic scenarios. When it comes
to unsupervised fault identification, one key aspect is how to assess
data similarity, so that similar samples, and therefore similar states,
can be clustered. Each sample plotted in GTM’s latent space has
a unique probability distribution (PD), a fingerprint, associated
to each latent grid point. By assuming that samples with corre-
lated PD profiles represent data with similar characteristics, GTM
can be used for fault identification and dimensionality reduction
simultaneously, including discrimination of normal and anoma-
lous data. Clustering is performed by Graph Theory (GT) (Harary,
1994), where similarity information is used for establishing a net-
work. Then, its density and number of connections unravel clusters
with different characteristics. This methodology, called GTM+GT
(Escobar et al., 2015), can successfully discriminate normal and
anomalous data, however there is much room for improvement.
This work aims to explore GTM+GT even more, revealing different
features of this combined approach, allowing better refinement of
normal clusters and revealing a myriad of different interpretations
for the networks established.

Three case studies are defined for performance comparison.
Initially, a simulation data set with multiple anomaly scenarios
is created. Secondly, Tennessee Eastman process (TEP) (Downs
and Vogel, 1993) is considered for validation of the methodology.
Finally, an industrial case study is used for final comparison and
validation. The proposed method (GTM+GT) is compared against
unsupervised and supervised PCA, DPCA, KPCA, GTM. Section 2
presents a review on dimensionality reduction and GT. Section 3
presents all fault identification methods considered for compari-
son in this work. Section 4 describes in detail the proposed method.
Section 5 presents several results, discussing the impact of differ-
ent methodologies on anomaly detection. Section 6 presents final
remarks and future work.

2. Dimensionality reduction and Graph Theory

2.1. Principal Component Analysis

Visualization of the relationship between distinct variables can
be rather complex, especially if the system possesses many vari-
ables or is non-linear. PCA is the most straightforward linear

approach known, relying on variables being converted into linearly
uncorrelated variables called Principal Components (PC), through
an orthogonal transformation (Jolliffe, 2002; Colliandre et al., 2012).
The basic logic behind PCA can be seen in Eq. (1).

X = TPT +E (1)

X is the original data set matrix, T is the score matrix, P is the load-
ing matrix and E is the residual matrix. P establishes the relation
between X and T, resulting in the projection of X values onto the
transformed space T, where the PCs are its column vectors. Each
PC contributes to the original data contained in X proportionally
to their eigenvalue. Such effect can be expressed as the equation
described in Eq. (2), considering data has been auto-scaled.

Cti
= �2(ti)

M
(2)

Cti
is the component contribution for PC ti and M is the num-

ber of input variables. The main goal is to select only those PCs
that contain relevant information, excluding the rest. The heuris-
tics considered in this work keeps only those components whose
accumulated component contribution is just below 99%.

Since one of its main limitations is its inherent linear nature,
which limits its application for more complex, non-linear systems,
other techniques were developed to cope with that, such as kernel
PCA (Choi et al., 2005), one of the most popular PCA extensions. In
this work, we  are focused on the original PCA, DPCA (Lin et al., 2000)
and kernel PCA, to be explained in details in the next subsections.

2.2. Dynamic Principal Component Analysis

DPCA extends the regular PCA concept by introducing dynam-
ics to better understand and represent non-linear time series
processes. The methodology itself is remarkably simple. Time
shifted variables are added as extra features, establishing a rela-
tion between current and past samples (Russell et al., 2000). Eq. (3)
shows how to represent this new variable set.

XDyn = [X1, X2, . . .,  Xd] =

⎡
⎢⎢⎢⎢⎣

xd+1 xd · · · x1

xd+2 xd+1 · · · x2

...
...

. . .
...

xN xN−1 · · · xN−d

⎤
⎥⎥⎥⎥⎦

(3)

Xi is the original data set being delayed, N is the total number of
samples and d is the sample delay. xn is a row vector with all vari-
ables for the nth sample. DPCA has the same approach as PCA, but
with extra time shifted column vectors. Thus, all analysis related to
PCA, such as determining the optimal number of principal compo-
nents, apply to DPCA as well.

2.3. Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) relies on efficiently
computing principal components in high-dimensional feature
spaces, using integral operators and non-linear kernel functions
(Lee et al., 2004). The concept behind KPCA is simple, where linearly
inseparable data are transformed (projected) onto a new feature
space, providing better discrimination. The mapping of a sample xi

can be written as xi → �(xi), where � is called kernel function.
Instead of applying PCA on the original data, a kernel matrix K

is used, where each matrix element k(xi, xj) is defined by the dot
products shown in Eq. (4)

k(xi, xj) = 〈�(xi), �(xj)〉 (4)

Kernels can map  non-linear data in distinct ways. Sigmoidal,
Polynomial and Gaussian kernels (Shawe-Taylor and Cristianini,
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