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a  b  s  t  r  a  c  t

Chemical  systems  often  exhibit  dynamics  in different  time  scales  owing  to fast  and  slow  reactions.  Thus
deriving  models  suitable  for computation  with  standard  numerical  methods  is challenging.  In this  tuto-
rial  we  present  a systematic  approach  for  modeling  chemical  reaction  systems  including  (known)  slow
reactions  and  fast  reactions  that  can  be  assumed  at equilibrium.  The  presented  approach  consists  of  the
following  steps:  (i)  identifying  an independent  set  of  reactions;  (ii)  writing  the  overall  mass  balance;  (iii)
writing  a  species  balance  for each  species;  (iv)  writing  the  species  transformation  rates  as  a  function  of
the net  reaction  rates;  (v)  introducing  a constitutive  equation  for each  reaction  (either  kinetic  rate  or
equilibrium  condition);  (vi)  performing  index  reduction  of  the  differential-algebraic-equation  (DAE)  sys-
tem.  The  resulting  reduced  system  can  be readily  solved  with  standard  DAE  integrators.  We  discuss  the
number  of  initial  conditions  to  be specified  and  illustrate  the  method  through  simple  examples:  methane
reforming,  Michaelis–Menten  reaction  and  hydrogen-deuterium  exchange.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Understanding chemical reaction kinetics is an important aspect
in academic research and chemical industries. Reaction kinetics
are used in various fields in chemistry and chemical engineering,
e.g., mechanistic studies, catalyst development, process control and
design, and process development (Berger et al., 2001). Understand-
ing of reaction kinetics often comes from combining experimental
studies and theoretical hypotheses, i.e., kinetic models. For model
validation additional experiments have to be carried out.

Modeling reaction systems consists of defining a set of equations
that describes the behavior of the system whether it be dynamic
or stationary. However, finding a suitable set of equations can be

∗ Corresponding author.
E-mail address: amitsos@alum.mit.edu (A. Mitsos).

challenging, e.g., when modeling dynamic systems involving mul-
tiple reaction steps. The equation system has to correctly describe
the behavior of the reaction system and be well-posed. In addition
some reactions may  be kinetically-controlled whereas others may
be so fast that they are always at equilibrium, which can result in
problems in the correct definition of the variables and equations,
and in numerical issues. An intrinsic part of modeling reaction net-
work systems is identifying a constitutive equation for the reaction
rates, which is quite challenging for fast kinetic rates. Moreover,
resolving the fast kinetics numerically results in additional chal-
lenges (very stiff systems).

Many approaches exist in literature on how to derive the reac-
tion rate equations, e.g., Rodin (1989), Carberry (1976), Carr (2007),
Marin and Yablonsky (2011), Turanyi and Tomlin (2014), and
Blackmond (2005). The reaction may  be elementary, the rate is
then proportional to the product of the substrates, or may follow
a multi-step mechanism. In the latter case the reaction network
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Nomenclature

Variables and greek symbols
c concentration
G Gibbs free energy
�rG standard Gibbs free energy of reaction
k reaction rate constant
K equilibrium constant
m mass
M molar mass
n amount of substance
N a number of
p vector of parameters
P pressure
r reaction rate
R net transformation rate/ideal gas constant
t time
T temperature
u vector of inputs
V volume
x vector of differential variables
z vector of algebraic variables
� sink or source
� stream flux
� chemical potential
� stoichiometric coefficient
� extent of reaction
� balance unity

Indices/subscripts/superscripts
a atoms
eq equilibrium
i chemical species index
j reaction step index
f forward (reaction rate)
r reverse (reaction rate)
s species

can be modeled via an overall rate equation or each reaction step
can be modeled individually. Modeling the overall reaction rate
can be done by eliminating the individual steps of the mechanism
using different assumptions, such as quasi-steady state assumption
(Carberry, 1976; Segel and Slemrod, 1989; Carr, 2007; Lazman and
Yablonsky, 2008), equilibrium or partial equilibrium assumption
(Turanyi and Tomlin, 2014). Generally, for large reaction networks,
the overall rate equation is complicated, incorporating terms for all
the reaction rates and their corresponding rate parameters. How-
ever, not all steps have the same influence on the dynamics of the
various system species. Therefore, the overall rate can often be sim-
plified (Turanyi and Tomlin, 2014; Gorban et al., 2010; Marin and
Yablonsky, 2011), e.g., assuming irreversibility of reaction steps
and rate limiting steps, where only the corresponding limiting rate
parameters are considered for the overall rate equation and the
others are neglected.

The derivation of the overall rate is not always necessary and
each single step of the reaction network can be modeled individ-
ually. In this case a reaction rate has to be defined for each single
step. Often the reaction rate follows elementary reaction kinetics.
When modeling complex reaction networks it is often difficult to
incorporate reaction rates with different dynamics into the system
model. Such networks often result in large, stiff dynamic systems.
Multiple valid approaches on how to model such systems exist
(Susnow et al., 1997; Okino and Mavrovouniotis, 1998; Haseltine
and Rawlings, 2002; Nicolas et al., 2015; Daoutidis, 2015). These

methods aim at model reduction and relaxation of the system’s
stiffness and can be divided into three general groups: reduction
of number of species, e.g., elimination and lumping methods (Li
and Rabitz, 1989; Li et al., 1994; Tomlin et al., 1994), reduction
of number of reactions, e.g., elimination and sensitivity analysis
methods (Turanyi et al., 1988; Turanyi, 1990), or decomposition of
the motion dynamics into fast and slow, e.g., quasi-steady state
and equilibrium assumption, slow or invariant manifold, singu-
lar perturbation and computational singular perturbation methods
(Bowen et al., 1963; Heineken et al., 1967; Fraser, 1988; Maas and
Pope, 1992; Rein, 1992; Lam and Goussis, 1994; Kumar et al., 1998;
Vora and Daoutidis, 2001; Gorban and Karlin, 2003; Roussel and
Zhu, 2004; Goussis and Valorani, 2006; Lee and Othmer, 2010;
Goussis, 2012; Gupta et al., 2016).

The modeling of complex reaction networks where chemical
species participate simultaneously in the fast (equilibrium) and
slow (kinetically-controlled) reaction rates has been extensively
studied in the past several decades. However, understanding and
implementing these methods often requires considerable knowl-
edge in the field. Complementing existing literature we present a
simple tutorial that can be applied without extensive mathemati-
cal and/or modeling background. Herein, we focus on how to model
dynamic reaction networks which exhibit different time dynamics,
i.e., with equilibrium and kinetic reaction rates. We  assume that the
fast reactions are equilibrium reactions and that they are known.
All non-equilibrium reactions are, therefore, considered to be slow
kinetically-controlled reactions. As with all methodologies, this cat-
egorization of reactions has its limitations to all chemical systems
(Turanyi et al., 1993; Goussis, 2012, 2015; Nicolas et al., 2015).

In this tutorial we describe step-by-step a systematic procedure
on how to obtain a consistent set of model equations and initial
conditions that is consistent with a general modeling framework
for integral balance equations in a control volume (Bird, 1957; Bird
et al., 1960), and specialize it to reactive systems. We  first identify
a consistent set of independent reactions and then write integral
balance equations for the chemical species of the consistent set. In
comparison to the slow reaction rates, the rates of the fast reactions
are not a priori known, but rather derived using index reduction.
Furthermore, the procedure can be easily incorporated into well
known basic process modeling frameworks. Herein only lumped
systems will be considered.

In the following sections we  will present in detail on how the
systematic approach can be applied to reaction networks with reac-
tion rates in different time scales and illustrate the method via three
simple examples.

2. A systematic approach to dynamic modeling

Consider a general multiple reaction system of the following
form:∑

i

Ai

r1�
∑

i

Ci

...∑
i

Ai
rn�

∑
i

Ci

(1)

where Ai and Ci are all the possible chemical species that are con-
sumed or produced, respectively, during a reaction step j, with
i = 1, . . .,  Ns and j = 1, . . .,  Nr, where Ns and Nr are the total number
of species and reaction steps, respectively. The reversible reaction
step j has a net reaction rate rj and is composed of a forward and a
backward reaction step:

rj = rj,f − rj,r (2)



Download English Version:

https://daneshyari.com/en/article/4764736

Download Persian Version:

https://daneshyari.com/article/4764736

Daneshyari.com

https://daneshyari.com/en/article/4764736
https://daneshyari.com/article/4764736
https://daneshyari.com

