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a  b  s  t  r  a  c  t

Proper  orthogonal  decomposition  (POD)  is  an attractive  way  to obtain  nonlinear  low-dimensional  models.
This article  reports  on  the  automatization  of the  mentioned  reduction  method.  An automatic  procedure
for the  reduction  of  differential  algebraic  systems  is  presented,  which  is implemented  in the  modeling
and  simulation  environment  ProMoT/Diana.  The  software  tool  has  been  applied  to  a nonlinear  heat  con-
duction  model  and  a continuous  fluidized  bed  crystallizer  model.  The  automatically  generated  reduced
models  are significantly  smaller  than  the  reference  models,  while  the  loss  of  accuracy  is  negligible.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Many modern mathematical models of real-life processes
impose difficulties when it comes to their numerical solution. This
holds especially for models represented by nonlinear distributed
parameter systems, which are frequent in engineering. Usually, for
the numerical solution of distributed parameter systems the orig-
inal system of infinite order is approximated by one with a finite
system order by a semi-discretization, which results in a system of
differential algebraic equations. The resulting number of degrees of
freedom is usually very high and makes the use of the discretized
model inconvenient for model-based process design, process con-
trol and optimization (Shi et al., 2006). Thus there is a need for
reduced models. Through model reduction, a small system with
reduced number of equations is derived. The numerical solution of
reduced models should be much easier and faster than the solu-
tion of the original problem. On the other hand, the reduced model
should be able to reproduce the system behavior with sufficient
accuracy in the relevant window of operation conditions and in the
relevant range of system parameters.

Various methods for nonlinear and linear model reduction
have been proposed, particularly in the areas of electrical and
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mechanical engineering, control design and computational fluid
dynamics. Some of them are based on physical simplifications like
assumption of perfect mixing, introduction of compartments, equi-
librium assumptions, etc. This approach requires physical insight
of the modeler and hence is hard to automatize. Another success-
ful approach, which may  also be considered as a physical model
reduction method, is based on nonlinear wave propagation the-
ory (Marquardt, 1990; Kienle, 2000). It produces reduced model by
approximation of the spatially distributed solution by profile with a
given shape. As in the previous case, this method requires physical
process understanding from the user and can be applied only for
special systems. The generalized method of moments (Marchisio
and Fox, 2005; Lebaz et al., 2016) is a widely used mathematical
reduction technique for population balance equations. In this case,
the reduced model does not preserve full information on spatial
profile. Another mathematical possibility to obtain reduced models
is to separate fast and slow subsystems. Slow manifold approx-
imation (Christofides and Daoutidis, 1997) requires complicated
symbolic operations, which impose difficulties on the automatiza-
tion of this method. To sum up, widely used methods for nonlinear
model reduction require experienced user; automatic application
and integration in a simulation tool is a difficult and challenging
task, which has hardly been attempted to our knowledge. On the
other hand, there are linear model reduction techniques like bal-
anced truncation (Benner et al., 2000; Heinkenschloss et al., 2011),
which are applicable to high order systems and can be automatized
quite easily. However, the resulting linear reduced models are only
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valid locally and not able to capture nonlinear properties of the
original system.

In this work proper orthogonal decomposition (POD) (Kunisch
and Volkwein, 2002; Park and Cho, 1996; Sirovich, 1987; Antoulas,
2005) is used for the development of an automatic procedure for
model reduction. This method has been successfully applied for
numerous problems in the fields of fluid dynamics, optimal control,
and for population balance systems like crystallizers (Krasnyk and
Mangold, 2010; Mangold et al., 2015), and granulators (Mangold,
2012). To put it in other words, the model reduction by POD is
a proven approach. Nevertheless, applying model reduction by
POD manually to complex engineering models is a challenging and
tedious task. The idea of this work is to provide a software envi-
ronment that performs the model reduction by POD automatically
with minimal additional input from the user.

The work is structured as follows. Section 2 discusses the model
reduction method. Technical details of the developed software tool
for automatic model reduction are described in Section 3. Section 4
shows the developed software tool in action by applying it to two
test models: a nonlinear heat conductor and a continuous fluidized
bed crystallizer.

2. Mathematical model reduction method

2.1. Reference model representation

Before applying a reduction procedure to the reference model, it
has to be transformed into a spatially discretized form by applying
the method of lines (Schiesser, 1991). Discretization results in a
system of differential algebraic equations, which may  be written as

B
dx

dt
(t) = f (x(t)) = Ax(t) + c + g(x(t)), (1)

where x(t) is the discretized state vector, B and A are the system
matrices, where B may  be singular, c is a constant vector, and g(x(t))
is a function that comprises the nonlinearities of the system.

2.2. POD method

In this work the proper orthogonal decomposition method
(Kunisch and Volkwein, 2002; Park and Cho, 1996; Sirovich, 1987;
Antoulas, 2005) is used for the development of an automatic pro-
cedure for the model reduction. The basic idea of this method
is to approximate the model solution by a linear combination of
time independent basis functions weighted by time dependent
coefficients. The basis functions are constructed from numeri-
cal simulation results of the detailed reference model. Applying
Galerkin’s method of weighted residuals produces the reduced
model equations. At this point the offline phase of the reduction
procedure ends, which can be extremely computationally inten-
sive depending on the complexity of the reference model. But these
efforts pay off in the second fast and cheap step, the online phase.
In the online phase only a differential algebraic system of low order
has to be solved.

As a starting point of the offline phase, the detailed reference
model has to be solved numerically. Snapshots for the model states
x(t1), x(t2), . . . and for the right-hand sides f(t1), f(t2), . . . are stored
in matrices X = (x(t1), x(t2), . . .)  and F = (f(t1), f(t2), . . .),  correspond-
ingly.

A reduced basis for the snapshots vectors is constructed from
the singular value decomposition (SVD) of X with

X = U�VT , (2)

where U is a unitary matrix containing the left singular vectors or
POD modes, which are already ordered by the singular values, VT

is a unitary matrix containing the right singular vectors and � is

a pseudo-diagonal matrix with the descending singular values as
entries. The singular values are a measure for the truncation error
and hence determine the order of the reduced model.

Consequently the basis vectors for the orthogonal projection are
taken as

�x
i = Ui, i = 1, . . .,  Nx, (3)

where Ui denotes the ith column of U, and Nx is the dimension of
the reduced basis and correspondingly the order of the resulting
reduced model.

The state vector x(t) is approximated by the following expres-
sion:

x(t) ≈ �x�x(t), (4)

where �x = (�x
1, . . .,  �x

Nx ), and �x(t) is the coefficient vector of the
reduced basis and the state of the reduced model.

In order to obtain equations for �x(t), the approximation for the
state vector (4) is inserted into the discretized differential equation
(1). To make the projection of the residuals on the reduced basis
vanish, Galerkin’s method of weighted residuals is applied, which
leads to

�xT B�x︸ ︷︷  ︸
=:Bred

d�x

dt
(t) = �xT A�x︸  ︷︷  ︸

=:Ared

�x(t) + �xT c︸︷︷︸
=:cred

+ �xT g(�x�x(t)) (5)

The matrices Bred, Ared and the vector cred from Eq. (5) have to be
evaluated only once for a fixed reduced basis, because they do not
depend on the reduced state vector �x(t).

2.3. Empirical interpolation

The nonlinear term on the right-hand side of Eq. (5) still depends
on the high order state vector of the reference model, bringing
additional complexity during the runtime of the reduced model.
Clearly, more efficient approaches are needed. There are several
methods in literature on how to handle the nonlinear terms in the
context of POD model reduction effectively, whose basic idea is to
approximate also the nonlinearities by basis vectors constructed
from snapshots (Grepl et al., 2007; Nguyen et al., 2008).

In this work the empirical interpolation method (EI) (Grepl
et al., 2007) is used. Its algorithm uses specially selected interpo-
lation indices to specify an interpolation-based projection instead
of a more costly orthogonal projection. Thus, the nonlinearity is
projected onto a subspace spanned by a basis, which approxi-
mates the solution space of the nonlinearity. The basis vectors
�g

i
, i = 1, . . .,  Ng for the available snapshots g(ti) = f(ti) − (Ax(ti) + c)

are constructed by the iterative procedure in Grepl et al. (2007).
During runtime of the reduced model, the nonlinearity is approxi-
mated as a linear combination of time independent basis functions
�g = (�g

1, . . .,  �g
Ng ) weighted by time dependent coefficients �g(t),

which follow from the linear equation system

�g
k︸︷︷︸

=:Dred

�g(t) = fk(x(t)) − (Ak�x︸︷︷︸
=:Ered

�x(t) + ck) (6)

The indices k from Eq. (6) are the output of the EI algorithm
described in Grepl et al. (2007) and chosen in such a way that the
approximation error is minimized. This is achieved by placing new
interpolation points where the residual between the input basis
and its approximation by former interpolation points is largest.

In summary, the resulting reduced model consists of the differ-
ential equations

�xT B�x︸ ︷︷  ︸
=:Bred

d�x

dt
(t) = �xT A�x︸  ︷︷  ︸

=:Ared

�x(t) + �xT c︸︷︷︸
=:cred

+ �xT �g︸ ︷︷  ︸
=:Gred

�g(t) (7)
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