Accepted Manuscript

Title: A volume-consistent discrete formulation of particle breakage equation

Author: Jitraj Saha Jitendra Kumar Stefan Heinrich

PII: S0098-1354(16)30348-9

DOI: http://dx.doi.org/doi:10.1016/j.compchemeng.2016.11.013

Reference: CACE 5602

To appear in: Computers and Chemical Engineering

Received date: 27-9-2016 Revised date: 9-11-2016 Accepted date: 10-11-2016

Please cite this article Jitraj Saha, Jitendra Kumar. Stefan as: Heinrich, A volume-consistent discrete formulation of particle breakage <!/CDATA/Computers and Chemical Engineering]]> (2016),http://dx.doi.org/10.1016/j.compchemeng.2016.11.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A volume-consistent discrete formulation of particle breakage equation

Jitraj Saha^{a,*}, Jitendra Kumar^a, Stefan Heinrich^b

^a Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

^b Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology, Hamburg-21073, Germany

November 9, 2016

Abstract

We introduce a finite volume scheme to approximate the one dimensional breakage equations. An interesting feature is that it is simple in mathematical formulation and predicts particle number density and its moments with improved accuracy. Efficiency of the new scheme is compared with the existing finite volume scheme proposed by Bourgade & Filbet (2008) (Math. Comp., 77, 851 - 882, 2008) over some test problems. It is seen that the new scheme preserves the volume conservative property of the previous scheme and additionally gives an improved estimation of the particle number density and its zero-order moment. Furthermore, the new scheme is computationally more efficient than the existing one. A detailed mathematical analysis including convergence and consistency of the new scheme is also performed. This analysis proves that the new scheme follows a second order convergence rate irrespective of the nature of the meshes. Several example problems are solved numerically to validate the results.

Keywords: fragmentation equation, finite volume schemes, volume conservation, consistency, convergence.

2010 subject classification: 65R20

1 Introduction

The particulate processes are well known in the literature as their applications can be found in various engineering branches as well as in physics, chemistry and several other disciplines. Among different particulate processes, fragmentation (or breakage) of particles into smaller pieces is very common. Several physical examples of particle breakage can be observed through the natural phenomenon like breaking up of a cluster, depolymerisation, fracturing of rocks, comminution in mills, etc. Besides these various designs of particle breakage are widely applied in the pharmaceutical, food, mineral, ceramic, paint

*Corresponding author.

Email address: jitraj@yahoo.com

Download English Version:

https://daneshyari.com/en/article/4764760

Download Persian Version:

https://daneshyari.com/article/4764760

<u>Daneshyari.com</u>