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a  b  s  t  r  a  c  t

The  performance  of  a bioreactor  is  sensitive  to  local  gradients  of  chemical  and  physical  stimuli.  Thus,
this  work  presents  a model,  which  captures  spatial  heterogeneity  and  interactions  of  biotic  and  abiotic
phases  in  animal  cell  cultures.  A computational  fluid  dynamics  simulation  that  includes  gas-liquid  mass
transfer  and  kinetics  of  carbon  dioxide  dissolution  is developed  to capture  the  variations  of environmental
parameters.  Unstructured  modeling  is implemented  to integrate  growth,  viability  and  productivity  of
cells.  While  predictive  accuracy  is  valuable,  it is  important  to  balance  it with  computational  feasibility.
In  this  work,  evolutions  of hydrodynamics  and  cell  population  are  obtained  sequentially.  The  outcome
is  a  deterministic  model  with  extended  integration  between  physical  and biological  phenomena  which
is  computationally  tractable.  The  model  calculates  the  bioreactor  performance  as  a  function  of  time  and
process parameters  such  as  impeller  rotation  speed  and  gas  sparging  flow  rate,  which  makes  it useful for
bioprocess  design  and  scheduling.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Industrialization of mammalian cell culture has been achieved
by integration of knowledge from several core concepts of chemi-
cal engineering, cellular and molecular biology, and biochemistry.
Mammalian cells currently represent the platform of choice for pro-
duction of therapeutic protein, molecules used in diagnostic tests
and vaccines. Protein produced in mammalian cell culture repre-
sents half of the annual revenue generated by the biotechnology
industry (Davidson and Farid, 2014).

Biopharmaceuticals generate global revenue of $163 billion
which is around one fifth of the market of pharmaceutical industry
(Otto et al., 2014). The revenue grows at more than 8% annu-
ally which is double that of conventional pharma. The number of
biotech patents applied for every year has been growing at 25%
annually and the percentage of drugs which make it to the market
is over twice that of small-molecule products. The growing demand
for therapeutic proteins from mammalian cells and increasing focus
from regulatory bodies on product quality have driven the require-
ment to improve in manufacturing capacity and efficiency. The
capacities of manufacturing sites has increased up to 200,000 L due
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to utilization of large scale bioreactors (as large as 25,000 L) (Farid,
2007).

Moreover the average commercial scale titer for mammalian-
expressed products has increased from 0.2–0.5 g/L in early 90’s to
2.5 g/L in the recent years (Rader and Langer, 2015; Li et al., 2010).
This has been achieved via improving vectors, host cell engineering,
clone selection, gene amplification and cell line screening (Wurm,
2004) and optimum design of medium, feeding strategy and pro-
cess engineering (Xie and Wang, 1996). Advancements in biology
have outpaced development of mathematical modeling and analy-
sis in biochemical engineering. In most cases cell cultures have been
modeled assuming homogeneity for either environment (Dorka
et al., 2009; Sidoli et al., 2006) or cell population (Schmalzriedt
et al., 2003). Coupling of environmental parameters and cellu-
lar metabolism rarely includes more than concentrations of few
metabolites (Mantzaris et al., 1999; Meshram et al., 2013). Scale-
up methodologies have been mainly based upon characterization
of mass transfer phenomena or agitation system.

Currently, research has focused on development of mechanistic
tools for process scale up to further understand some of the chal-
lenges of scale-up including reduction in productivity and increase
in byproduct formation (Pigou and Morchain, 2015). Although the
necessity of integration of systems biology and process develop-
ment has been considered and partially addressed (Meshram et al.,
2013; Song et al., 2013; Fernandes et al., 2011) a robust framework
for development of mechanistic unit operation models has yet to be
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Fig. 1. Systematic development of predictive mathematical models for animal cell
cultures.

established (Chen et al., 2016). An instance of systematic approach
toward modeling cell cultures is the strategy devised by Pistikopou-
los and his colleagues (Fig. 1) (Kontoravdi et al., 2010; Kiparissides
et al., 2011).

The model discussed here has been developed following the first
two steps of this framework. Model parameters have been chosen
based on availability of experimental data and model structure has
been designed with the mindset of capturing spatial heterogene-
ity inside the reactor and integration of environmental mechanical
and chemical stimuli with cellular metabolism. The state and input
variables of a bioreactor model can be divided into four groups.
The first group includes operational parameters such as agitation
and aeration rates and temperature; the second group consists of
environmental parameters such as pH, concentrations of chemi-
cals inside the bioreactor (i.e. constituents of cultivation medium,
dissolved oxygen and carbon dioxide); and the third group com-
prises of biochemical (intracellular) parameters that can be used
to describe the metabolic state of cells including cell mass com-
position; enzymes and proteins. Finally the fourth group includes
macro-biological parameters to take into account contamination,
degeneration, aggregation, and/or mutation (Nicoletti et al., 2009).

Fig. 2 explains interactions between the first three groups of
these parameters (Li et al., 2010). The desirable operating condition
is maintained through control of pH, dissolved oxygen concen-
tration, temperature and pressure. The elements which together
define cellular environment and are directly or indirectly affected
by selection of control strategy are shown in Fig. 2. The features
incorporated in this simulation model make it possible to study
effects of impeller rotation speed, CO2 and O2 sparging flow rates
and pH on growth, viability and productivity of cells in a batch-
mode operated bioreactor. Those are shown underlined in Fig. 2. In
the next section, the components of the model and their integration
are explained. Section 3 includes results for different combina-
tions of aeration and agitation rates whereas Section 4 offers some
discussion on challenges and potentials in the area of bioreactor
modeling.

2. Model development

To capture effects of agitation and aeration on growth, viability
and productivity of cells, a model of a large-scale bioreactor should
take into account fluid dynamics, gas-liquid interaction, interphase

mass transfer, cell source variability and metabolism. In the rest of
this section each of the components of the model is explained then
the strategy used for running the dynamic simulation is explained.

2.1. Hydrodynamics

Inefficient mixing creates spatial gradients in pH, dissolved oxy-
gen (DO), carbon dioxide and metabolites concentrations, shear and
temperature. As cells travel inside the reactor they are exposed
to fluctuating environmental conditions which affect metabolism,
yield and quality of product (Lara et al., 2006). Most of the models
developed for bioreactors have assumed homogenous environment
and been validated with data extracted from laboratory scale biore-
actors (Dorka et al., 2009; Sidoli et al., 2006; Meshram et al., 2013;
Mantzaris and Daoutidis, 2004; Mantzaris, 2006; Fadda et al., 2012;
Jandt et al., 2015; Craven et al., 2014; Sbarciog et al., 2014; Amribt
et al., 2013). So further improvements of these models are necessary
before using them for scale up analysis (Farzan et al., 2016).

Spatial and temporal variations of environmental parameters
are captured by modeling hydrodynamics of the reactor through
implementation of computational fluid dynamics (CFD) using
ANSYS

®
Fluent

®
15.0.7. The environment refers to physical and

chemical stimuli acting on cells. In the proposed model physi-
cal stimuli include gas volume fraction, superficial gas velocity
and dissipation rate of energy. Chemical stimuli are limited to
concentrations of metabolites (glucose, glutamine, lactate and
ammonium) and dissolved oxygen; and pH. A more comprehen-
sive model may  include concentrations of other supplements which
have functions such as species transport enhancement, growth
stimulation, shear protection and surface charge modification. The
addition of a component imposes extra computational burden on
solver, thus it is important to balance computational requirements
of various components of the model. The flow of a single phase,
gas or liquid, is described by conservation laws of mass, momen-
tum, energy, charge, etc. If thermodynamic, transport and chemical
properties of a component needs to be specified these field equa-
tions may  be accompanied by the constitutive equations of state,
stress, chemical reactions, etc. Due to low solubility in water, high
densities of cells quickly consume all the oxygen in a saturated cul-
ture and produce enough carbon dioxide that it can have inhibitory
effects. As a result addition and removal of gases are inevitable parts
of operation of a large-scale fermenter.

In multi-phase flows the presence of interfacial surface makes
mathematical formulation of the problem much more difficult. To
derive the field and constitutive equations of multi-phase flow
local characteristics have to be considered which is not straight
forward. This difficulty is the result of unknown motions of multi-
ple deformable interfaces, variables’ fluctuations due to turbulence
and moving interfaces and discontinuity of properties at the inter-
face. It has been concluded that by obtaining mean values of flow
properties through proper averaging local instantaneous fluctua-
tions are eliminated. Three methodologies have been introduced
for averaging: Eulerian, Lagrangian and Boltzmann statistical aver-
aging. The Eulerian approach takes time and space coordinates
as independent variables and other variables are expressed with
respect to them. In the Lagrangian description, particle coordi-
nates replace spatial coordinates which gives clear advantage to
this method if the behavior of individual particles is of interest. On
the other hand if the focus is group behavior of particles the Eulerian
approach is preferred (Ishii and Hibiki, 2011). Tracking individ-
ual bubbles imposes extra computational cost and would improve
model’s predictive power only if there was  sufficient knowledge on
interactions between individual bubbles and the liquid phase; i.e.
growth, breakage and agglomeration of bubbles and energy dissi-
pation due to bubble rupture. Therefore gas and liquid phases are
considered as continuums and Eulerian averaging is used in this
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