Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Quantitative determination of conjugated linoleic acid and polyunsaturated fatty acids in milk with C17:0 as internal marker – Evaluation of different methylation procedures

S. Lashkari*, S.K. Jensen

Department of Animal Science, Aarhus University, AU Foulum, DK-8830 Tjele, Denmark

ARTICLE INFO

Article history: Received 10 July 2017 Received in revised form 5 September 2017 Accepted 12 September 2017 Available online 15 September 2017

Keywords: Methylation procedures Milk fatty acid Conjugated linoleic acid

ABSTRACT

Fatty acids are commonly analysed by gas chromatography as their corresponding fatty acid (FA) methyl esters (FAME). For quantitative determination of individual FA an internal standard like C17:0 is necessary. Conjugated FA and polyunsaturated fatty acid (PUFA) represents a challenge in the methylation steps, as they are sensitive to pH changes and oxidation. The present study was carried out to determine the efficiency of different methylation procedures on quantitative determination of conjugated linoleic acid (CLA), PUFA and response of internal standard. The highest response of internal standard was observed for boron trifluoride (BF₃)/ methanol and methanolic HCl followed by NaOCH₃, while cis-9, trans-11 CLA, total CLA and PUFA was higher with methanolic HCl followed by NaOCH₃ compared with the BF₃ method. These data can be useful for quantitating of milk FA.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area Analytical chemistry, food chemistry Milk fatty acid methylation and analysis

* Corresponding author.

http://dx.doi.org/10.1016/j.dib.2017.09.022

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: S.Lashkari@hotmail.com (S. Lashkari).

Type of data	Tables
How data was	Gas chromatograph (Hewlett-Packard 6890 series, Agilent Technologies, Palo Alto,
acquired	CA, USA) equipped with an automatic column injector (Hewlet Packard 7673), a
	capillary column of 30 m \times 0.32 mm i.d., 0.25 μ m thickness (Omegawax 320;
	Supelco, Sigma- Aldrich), and a flame ionization detector.
	The initial temperature was set at 60 °C, and then the temperature was raised to
	210 °C at the rate of 2 °C/min.
	Fatty acids were identified by comparison of retention times with external stan-
	dards (GLC-68C, Nu- Prep-Check, Elysian, MN, USA).
Data format	Raw data collection and analysis.
Experimental	Evaluation of different methylation procedures for quantitative analyses of
factors	CLA, PUFA and C17:0 as internal standard including: alkaline catalysts, acidic
	catalysts and combination of alkaline and acidic catalysts.
Experimental features	Obtained data were analyzed in a completely randomized design
Data source	Aarhus university, AU Foulum, DK-8830 Tjele, Denmark
location	
Data accessibility	Data are presented in this article

Value of the data

- Despite all various methods employed for milk FA analyses, there are still conflicting opinions about the best method for overcoming all the difficulties posed by the analysis of complex mixtures including CLA isomers and PUFA.
- For quantitative analysis of FA, addition of internal standard is necessary. Furthermore, when an internal standard is used, the method has the capability to determine both total FA distribution and the amount of individual FA in a given sample simultaneously.
- Due to the heterogeneity of milk fatty acid, it is necessary to study the methylation procedure in order to obtain accurate quantitative and qualitative results.

1. Data

The internal standard response was checked to verify the effect of different methylation procedures on methylation of internal standard. Table 1 shows area under the chromatogram peak of C17:0 analyzed following the different methylation methods. The area under the chromatogram peaks was 2706 and 1834 units for the C17:0 methylated with BF₃/methanol and methanolic HCl followed by NaOCH₃ procedures, respectively. However, response of internal standard for the other methods was near to zero. In the present study, methanolic HCl followed by NaOCH₃ and BF₃/ methanol methods catalyzed methylation of C17:0; therefore, analysis of milk samples with these two methods was included in the paper. Table 2 shows milk FA amount and composition following the two methylation procedures. The amount of total FA for BF₃/methanol method was 95% of the amount detected with the methanolic HCl followed by NaOCH₃ method. Cis-9, trans-11 CLA was 29% higher with methanolic HCl followed by NaOCH₃ than the BF₃/methanol method. In addition, with methanolic HCl followed by NaOCH₃, amount of trans-10, cis-12 CLA was 23% higher than with the BF₃/methanol method. Download English Version:

https://daneshyari.com/en/article/4764862

Download Persian Version:

https://daneshyari.com/article/4764862

Daneshyari.com