Data in Brief 15 (2017) 281-299

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib



Data Article

# Comprehensive data on a 2D-QSAR model for Heme Oxygenase isoform 1 inhibitors



Emanuele Amata <sup>a,\*</sup>, Agostino Marrazzo <sup>a</sup>, Maria Dichiara <sup>a</sup>, Maria N. Modica <sup>a</sup>, Loredana Salerno <sup>a</sup>, Orazio Prezzavento <sup>a</sup>, Giovanni Nastasi <sup>b</sup>, Antonio Rescifina <sup>a</sup>, Giuseppe Romeo <sup>a</sup>, Valeria Pittalà <sup>a,\*</sup>

<sup>a</sup> Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
<sup>b</sup> Department of Mathematics and Computer Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

#### ARTICLE INFO

Article history: Received 18 July 2017 Received in revised form 7 September 2017 Accepted 19 September 2017 Available online 21 September 2017

Keywords: Heme Oxygenase 2D-QSAR pIC50 prediction FDA CORAL

## ABSTRACT

The data have been obtained from the Heme Oxygenase Database (HemeOxDB) and refined according to the 2D-QSAR requirements. These data provide information about a set of more than 380 Heme Oxygenase-1 (HO-1) inhibitors. The development of the 2D-QSAR model has been undertaken with the use of CORAL software using SMILES, molecular graphs and hybrid descriptors (SMILES and graph together). The 2D-QSAR model regressions for HO-1 half maximal inhibitory concentration (IC<sub>50</sub>) expressed as pIC<sub>50</sub> (pIC<sub>50</sub>=-LogIC<sub>50</sub>) are here included. The 2D-QSAR model was also employed to predict the HO-1 pIC<sub>50</sub>values of the FDA approved drugs that are herewith reported.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

### **Specifications Table**

Subject areaComputational ChemistryMore specific<br/>subject areaQuantitative Structure-Activity Relationship (QSAR) modeling

\* Corresponding authors.

http://dx.doi.org/10.1016/j.dib.2017.09.036

E-mail addresses: eamata@unict.it (E. Amata), vpittala@unict.it (V. Pittalà).

<sup>2352-3409/© 2017</sup> The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

| Type of data             | Table, figure                                                                    |
|--------------------------|----------------------------------------------------------------------------------|
| How data was<br>acquired | Statistical modeling and online databases                                        |
| Data format              | Raw and analyzed                                                                 |
| Experimental             | The whole dataset consists of 382 HO-1 inhibitors which were randomly split      |
| factors                  | and divided into training, invisible training, calibration, and validation sets. |
| Experimental             | The 2D-QSAR models have been developed using CORAL software. Chemical            |
| features                 | structure descriptors and pIC <sub>50</sub> were used as variables.              |
| Data source              | Department of Drug Sciences, Department of Mathematics and Computer              |
| location                 | Sciences, University of Catania, Italy                                           |
| Data accessibility       | With this article                                                                |

#### Value of the data

- HO-1 is a crucial enzyme involved in the catabolism of heme and overexpressed in a number of tumors with poor clinical outcome.
- 2D-QSAR modeling data was generated to provide a method useful in finding or repurposing novel HO-1 inhibitors.
- The model has also been used to predict the HO-1 pIC<sub>50</sub> for the FDA-approved drugs.

#### 1. Data

HO-1 is a crucial enzyme involved in the regioselective catabolism of heme. Strongly induced upon stressful condition, HO-1 is recognized to fulfil crucial roles in cytoprotection and in the maintenance of endogenous homeostasis, playing a role in metabolic, cardiovascular, and pulmonary diseases [1–3]. Nevertheless, under adverse circumstances it has been demonstrated that aberrant levels of HO-1 may sustain cancerous diseases. Therefore, its inhibition is of interest in all such pathological conditions [4–7]. QSAR models as well as other methods are regression, classification or statistical methods used in the chemical and biological sciences, helping in predicting variables or in understanding patterns [8–11]. Data here reported provide information about a set of HO-1 inhibitors, recovered from the Heme Oxygenase Database (HemeOxDB) together with their  $pIC_{50}$  ( $-logIC_{50}$ ) [12]. These latter have been used in building up the first hybrid 2D-QSAR model embracing the all set of known HO-1 inhibitors. The model has also been used to predict the HO-1  $pIC_{50}$  for the Food and Drug Administration approved drugs. These latter predicted HO-1  $pIC_{50}$  data are also here reported.

#### 2. Experimental design, materials and methods

#### 2.1. Dataset preparation

The dataset consists of 382 HO-1 inhibitors which were randomly split three times and then divided into training (131 compounds), invisible training (131 compounds), calibration (60 compounds) sets for model development and a validation set (60 compounds) for invisible model validation. The three splits and four sets have been randomly generated, and their  $plC_{50}$  minimum, maximum and middle are reported in Table 1.

Download English Version:

# https://daneshyari.com/en/article/4764914

Download Persian Version:

https://daneshyari.com/article/4764914

Daneshyari.com