

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the fate of MACS[®] MicroBeads intramyocardially co-injected with stem cell products

Paula Müller^{a,b,1}, Ralf Gaebel^{a,b,1}, Heiko Lemcke^{a,b}, Gustav Steinhoff^{a,b}, Robert David^{a,b,*}

 ^a Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
 ^b Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 2 May 2017 Received in revised form 30 May 2017 Accepted 21 June 2017 Available online 24 June 2017

Keywords: Stem cell therapy Cardiovascular regeneration Haematopoietic stem cells (HSCs) Mesenchymal stem cells (MSCs) Magnetic activated cell sorting (MACS³⁰) MACS³⁰ MicroBeads

ABSTRACT

The data presented in this article are related to the research article "Intramyocardial Fate and Effect of Iron Nanoparticles co-injected with MACS[®] purified Stem Cell Products" (Müller et al., 2017) [1]. This article complements the cellular localization of superparamagnetic iron dextran particles (MACS[®] MicroBeads) used for magnetic activated cell sorting (MACS[®]). Data evaluate the timedependent detachment of these nanoparticles from CD133⁺ haematopoietic stem cells (HSCs) and CD271⁺ mesenchymal stem cells (MSCs). Furthermore, the influence of these stem cells as well as of nanoparticles on cardiac remodeling processes after myocardial infarction (MI) was investigated.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.biomaterials.2017.05.002

http://dx.doi.org/10.1016/j.dib.2017.06.035

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Correponding author at: Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.

E-mail address: robert.david@med.uni-rostock.de (R. David).

¹ Authors contributed equally to this work.

Specifications Table

Subject area	Biology
More specific subject area	Intramyocardial transplantation of $MACS^{\circ}$ purified stem cell products
Type of data	Image, graph, figure, text file
How data was acquired	Structured illumination microscopy (Zeiss ELYRA PS.1 LSM 780), flow cytometry (BD LSR-II), histological staining
Data format	Analyzed
Experimental	CD133 $^+$ and CD271 $^+$ stem cells were automatically (using the CliniMACS $^{ m extsf{B}}$
factors	Prodigy BM-133 system) and manually (using Mini MACS [®] technology) isolated from human bone marrow (BM)
Experimental	Investigation of the Intracellular localization and time-dependent detachment of
features	MACS [®] MicroBeads from stem cells using the Labeling Check Reagent-FITC (Mil-
	tenyi Biotec). Impact of MACS [®] MicroBeads on collagen deposition after myo-
	cardial infarction using an ischemia/reperfusion mouse model and Sirius Red staining.
Data source	Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
location	
Data accessibility	The data are available with this article

Value of the data

- MACS[®] is the most commonly used technique for the purification of stem cell subpopulations intended for the treatment of cardiovascular diseases.
- Data about the binding of MACS[®] MicroBeads to stem cells are crucial for *in vivo* application of stem cell products.
- Data provide information about the effect of co-injected MACS[®] MicroBeads on cardiac remodeling processes after MI.
- Data can be useful for other researchers analyzing the cardiac regeneration potential of MACS[®] purified stem cells products.
- Data clarifies the safety of MACS[®] MicroBeads for clinical application.

1. Data

The data include information about the cellular localization of MACS[®] MicroBeads (labelled with Labeling Check Reagent-FITC) right after the manual MACS[®] based isolation of CD133⁺ and CD271⁺ stem cells (Fig. 1). The detachment of FITC-labelled MACS[®] MicroBeads was evaluated by measuring the time-dependent fluorescence intensity of MACS[®] purified CD133⁺ cells incubated under cell culture conditions (37 °C in StemSpan[™] H3000) using flow cytometry (Fig. 2). Furthermore, the effect of manually and automatically (Good Manufacturing Practice (GMP)-conform) MACS[®] purified CD133⁺ and CD271⁺ stem cells as well as of MACS[®] MicroBeads on fibrosis after MI was assessed in a cardiac ischemia/reperfusion mouse model by histological staining (Fig. 3).

Download English Version:

https://daneshyari.com/en/article/4765002

Download Persian Version:

https://daneshyari.com/article/4765002

Daneshyari.com