Data in Brief 13 (2017) 437-443

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Visualization of simulated small vessels on computed tomography using a model-based iterative reconstruction technique

Toru Higaki^{a,*}, Fuminari Tatsugami^a, Chikako Fujioka^b, Hiroaki Sakane^a, Yuko Nakamura^a, Yasutaka Baba^a, Makoto Iida^a, Kazuo Awai^a

^a Department of Diagnostic Radiology, Hiroshima University, 1–2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
^b Department of Radiology, Hiroshima University Hospital, 1–2-3 Kasumi, Minami-ku, Hiroshima 734-8551,

" Department of Kaalology, Hirosnima University Hospital, 1–2–3 Kasumi, Minami-ku, Hirosnima 734-8551, Japan

ARTICLE INFO

Article history: Received 1 May 2017 Accepted 13 June 2017 Available online 16 June 2017

Keywords: Computed tomography (CT) CT angiography Image reconstruction Hybrid iterative reconstruction Model-based iterative reconstruction

ABSTRACT

This article describes a quantitative evaluation of visualizing small vessels using several image reconstruction methods in computed tomography. Simulated vessels with diameters of 1–6 mm made by 3D printer was scanned using 320-row detector computed tomography (CT). Hybrid iterative reconstruction (hybrid IR) and model-based iterative reconstruction (MBIR) were performed for the image reconstruction.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table [please fill in right-hand column of the table below]

Subject areaRadiologyMore specific
subject areaEffect of Image reconstruction methods for small blood vessels in CT.Type of dataImage, graph, text

* Corresponding author. E-mail address: higaki@hiroshima-u.ac.jp (T. Higaki).

http://dx.doi.org/10.1016/j.dib.2017.06.024

^{2352-3409/© 2017} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

How data was acquired	Phantom with simulated small vessels was scanned with CT, and it was reconstructed by hybrid IR and MBIR.
Data format	Raw, Analyzed
Experimental	The sharpness of the blood vessel boundary was measured with a quantitative
factors	index.
Experimental	Radiation dose was determined by the routinely used noise level in coronary
features	CT angiography. Adaptive Iterative Dose Reduction 3D (AIDR 3D) was used as
	the hybrid IR, Forward-projected model-based Iterative Reconstruction Solu-
	Tion (FIRST) was used as the MBIR.
Data source location	1-2-3 Kasumi, Minami-ku, Hiroshima, 34° 22′ 44.4″ N; 132° 28′ 38.26″ E
Data accessibility	The data are available with this article

T. Higaki et al. / Data in Brief 13 (2017) 437-443

Value of the data

- The data has described the effect of MBIR for visualizing small vessels in CT images.
- Researchers can recognize the difference in the appearance of small vessels in various reconstruction method.
- Also researchers can recognize the difference in the appearance of small vessels in various diameters.
- This data shows the superiority of MBIR for visualization of small vessels.

1. Experimental design, materials and methods

1.1. Vessel phantom

The vessel phantom (outer diameter 80 mm) was made by a 3D printer (Agilista 3100, KEYENCE, Osaka, Japan) and included cylinders that simulated 1-, 2-, 3-, 4-, 5-, and 6-mm vessels (Fig. 1). The aorta was simulated by a 30-mm diameter cylinder at the center of the phantom. The cylinders were filled with diluted iodine contrast material (Iohexol, Daiichi-Sankyo, Tokyo, Japan, concentration 13 mgI/ml) to simulate the vascular space.

Fig. 1. Design of our vessel phantom. The cylinders measuring 1–6 mm in diameter simulate small vessels. The 30-mm diameter cylinder in the center simulates the ascending aorta.

Download English Version:

https://daneshyari.com/en/article/4765009

Download Persian Version:

https://daneshyari.com/article/4765009

Daneshyari.com