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Abstract In this paper, an algorithm is proposed to integrate the unsupervised learning with the
optimization of the Finite Mixture Models (FMM). While learning parameters of the FMM the
proposed algorithm minimizes the mutual information among components of the FMM provided
that the reduction in the likelihood of the FMM to fit the input data is minimized. The performance
of the proposed algorithm is compared with the performances of other algorithms in the literature.
Results show the superiority of the proposed algorithm over the other algorithms especially with

data sets that are sparsely distributed or generated from overlapped clusters.
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1. Introduction

Unsupervised learning or cluster analysis is an important task
in pattern recognition. It is interested in grouping similar
feature vectors in an input data set into a number of groups
or clusters. Feature vectors belonging to the same cluster are
similar to each other more than to other feature vectors
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belonging to the other clusters. Several clustering algorithms
are proposed in the literature such as the K-means algorithm,
and the FMM [1,2]. The FMM is preferred for cluster analysis
because it produces a certainty estimate of the membership of
each feature vector to each one of the clusters in the input data
set. Each component in the FMM is usually a Gaussian distri-
bution. Unsupervised learning of the FMM parameters is
usually achieved via the Expectation—-Maximization (EM)
algorithm [3]. The EM algorithm determines the FMM param-
eters that maximize the likelihood of this FMM to fit the input
data set. However, the EM algorithm has some limitations.
First, it produces sub-optimal results as it converges to the
nearest local maximum of the likelihood function to the start-
ing point. Second, it produces biased estimates for the mixture
parameters when clusters are poorly separated i.e., overlapped,
or when mixing weights of the mixture components have ex-
treme values i.e., data are sparsely distributed [4]. Optimiza-
tion of a FMM is defined as the minimization of the number
of components in the FMM required for fitting an input data
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set. Optimization is one of the most difficult problems in clus-
ter analysis [5].

Several criteria are proposed in the literature for the estima-
tion of the number of FMM components and hence the
number of clusters assuming that each cluster is represented
by a component in the FMM. A group of these criteria is
the penalized-likelihood criteria, which include as examples
the Bayesian Information Criterion (BIC) [6], the Bezdek’s
Partition Coefficient (PC) [7], and the Minimum Message
Length (MML) criterion [8]. Other examples are the Informa-
tion Theoretic Measure of Complexity (ICOMP) [9,10], the
Minimum Description Length (MDL) criterion [11], the
Akaike’s Information Criterion (AIC) [12], the Approximate
Weight of Evidence (AWE) criterion [13], and the Evidence-
Based Bayesian (EBB) criterion [14]. Also, a new MML-like
criterion is proposed [15] and used with the Component-Wise
EM (CEM) algorithm [16] to estimate the number of FMM
components. The resulting algorithm overcomes problems of
the common EM algorithm such as obtaining sub-optimal re-
sults; and approaching the boundary of the parameter space
when at least one of the components becomes too small. How-
ever, due to the dependency on the EM algorithm the model
selected using these criteria is not necessarily the best model
for clustering small data sets. In other words, the selected mod-
el does not necessarily represent well-separated clusters that
are clearly associated with the model components [17]. It has
been shown that the BIC/MDL criterion performs comparably
with both of the EBB and the MML criteria, and it outper-
forms many other criteria in the literature [14]. The BIC/
MDL criterion has been shown to produce a good approxima-
tion to Bayes factor [18]. However, although the BIC/MDL
criterion is preferred when data clusters are separated and
the data size is large [19], it tends to overestimate the number
of components when cluster shapes are not Gaussian [4]. On
the other hand, it tends to underestimate the number of
components when clusters are overlapped or when the number
of feature vectors in the given data set is small [20]. Penalized-
likelihood criteria compromise the goodness of fitting of the
FMM to the input data set with the complexity of that
FMM. Since the mixture complexity is a quadratic function
of the number of features (dimensions) in the input data set
these criteria are sensitive to the increase of the number of
features in the input data set. In the rest of this paper, the
algorithms that use the BIC and the MML criteria for
determining the number of FMM components are referred to
as the BIC algorithm and the MML algorithm, respectively.

Another group of criteria for the estimation of the number
of FMM components is based on the mutual information. This
group includes Data Entropy that is used to evaluate different
mixture models with different number of components [21].
However, this criterion may overestimate the number of
components in the presence of outliers, as it is biased toward
producing separated components. Another criterion in this
group based on the Bayesian-Kullback Ying-Yang learning
theory [22] is proposed [23]. This criterion is used in determin-
ing the number of FMM components [5]. However, due to the
dependency on the EM algorithm for learning mixture model
parameters this criterion has the same drawbacks of the penal-
ized-likelihood criteria. Therefore, this criterion produces inac-
curate results with small data sets [5]. Also, an algorithm that
is based on the mutual information theory is proposed [20].
However, on the opposite of the algorithms that use the penal-

ized-likelihood criteria, this algorithm removes the largest
component that is overlapped with many other small compo-
nents in the FMM. This results in bad quality of the cluster
structure obtained by the resulting FMM because large com-
ponents in the FMM are supported by the data more than
small components. In addition, deleting large components in
the FMM causes the likelihood function to be largely de-
creased. This algorithm also underestimates the number of
mixture components when some clusters are poorly separated
in the data space. Finally, the authors used only centers of the
mixture components instead of all the data points in their def-
inition of the mutual information between two components in
the FMM. This may be only valid with data sets that are dense
and concentrated around their cluster centers as the examples
shown by the authors. In the rest of this paper, this algorithm
is referred to as the Mutual Information (MI) algorithm. An-
other algorithm that is based on mutual information theory is
proposed [24]. However, this algorithm has initialization prob-
lem due to starting with small number of components in the
mixture model. In addition, this algorithm has satisfactory re-
sults in determining the number of mixture components that is
equal to the number of clusters of the input data set only when
the size of this data set is large as reported by the authors.
With small data sets, especially those data sets that are sparsely
distributed and generated from overlapped clusters, this algo-
rithm underestimates the number of mixture components due
to the use of the histogram method for density estimation. Re-
cently, a Bayesian Ying-Yang (BYY) scale-incremental EM
algorithm for Gaussian mixture learning for both the parame-
ter estimation and model selection is proposed [25]. However,
this algorithm has initialization problem due to starting with
small number of components in the mixture model and using
the BYY harmony function as a stopping criterion that de-
pends on the estimated values of mixture parameters via the
EM algorithm. In addition, with small data sets, especially
those data sets that are sparsely distributed and generated
from overlapped clusters, this algorithm underestimates the
number of mixture components because the BYY harmony
function is biased toward producing well separated clusters
of nearly equal size.

Different criteria for the estimation of the number of FMM
components include Adaptive Mixtures algorithm that is a
recursive form of the EM algorithm [26]. Although this algo-
rithm does not require a range of the number of components,
it may overestimate the number of components when the given
data set contains sparsely distributed data [20]. Also, it may
underestimate the number of components when some clusters
in the data space are poorly separated. This results from the
iterative form of the EM algorithm, which may generate an
unnecessary component for few outliers in the data set and
also may allow many components to be overlapped. In addi-
tion, the resulting model depends on the order of presenting
the input data patterns to the algorithm due to the recursive
nature of the algorithm. Finally, this algorithm does not have
a measure that compromises the increase in the FMM com-
plexity with the goodness of fitting of that model to the given
data. A cross-validated likelihood criterion is proposed to
estimate the number of components in the FMM using large
data sets [27]. However, this criterion requires not only a large
data set in order to be divided into training and test data but
also a sufficient range of the number of components. In
addition, the selected model is not necessarily the optimum
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