

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on microsatellite markers in Colletotrichum gloeosporioides s.l., polymorphism levels and diversity range

Laurent Penet^{*}, Sophie Briand, Dalila Petro, François Bussière, Sébastien Guyader

INRA, UR1321, ASTRO Agrosystèmes tropicaux, F-97170, Petit-Bourg (Guadeloupe) France

ARTICLE INFO

Article history: Received 8 March 2017 Received in revised form 12 April 2017 Accepted 4 May 2017 Available online 11 May 2017

Keywords: Colletotrichum gloeosporioides Anthracnose disease Microsatellites Molecular markers

ABSTRACT

Colletotrichum gloeosporioides is a species complex of fungi belonging to the *Glomerellaceae* family (Ascomycota). It has a global worldwide occurrence and while sometimes described as a plant endophytic commensal, it also often demonstrates pathogenicity on crops and is responsible for anthracnose disease in many cultivated species. Thirty-nine polymorphic microsatellites were isolated and their polymorphism levels were determined in 95 strains from Guadeloupe (Lesser Antilles), mostly isolated from Water Yam (*Dioscorea alata*). The average allele number per polymorphic locus was 12.3 (decreasing to 4.3 at 5% frequency threshold, indicative of dramatic amounts of rare polymorphisms), with a range of 2–29 alleles. The microsatellite markers data will facilitate genetic diversity analyses and population genetics studies for the species complex.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area Biology Microsatellite markers data (primers and expected diversity levels)

* Corresponding author. E-mail address: laurent.penet@inra.fr (L. Penet).

http://dx.doi.org/10.1016/j.dib.2017.05.012

2352-3409/© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Type of data How data was	Table ABL PRISM 3730XL automated sequencer (MACROGEN)
acquired	
Data format	Raw (primers information) and partially analyzed (diversity indices)
Experimental factors	Genomic DNA
Experimental	Isolation of microsatellite markers and amplification test
features	
Data source location	Guadeloupe 4°44.0694′ N 53°46.881′ W
Data accessibility	This manuscript (Table 1), primers are also available from probe data bank @
	NCBI (www.ncbi.nni.nni.gov/probe/)

Value of the data

- Large set of potentially polymorphic microsatellite markers in Colletotrichum gloeosporioides.
- Diversity and genetic structure analyses at both fine and broad geographic scales.
- Pathogenic strains genetic profiling.
- Further Colletotrichum gloeosporioides species delineation (complimentary to sequencing data).
- Origin of crop inocula and host origin analyses.

1. Data

This dataset is a list of 39 microsatellite markers from the worldwide pathogenic species complex *Colletotrichum gloeosporioides*, including primers and basic information relative to diversity levels expected at each locus. *Colletotrichum* fungi are diversified [1], with species ranging from genuine endophytic commensals to biotrophic parasites or even saprophytic pathogens [2]. Species of this genus are thus often associated with crop diseases, and especially anthracnose in plants [3–5]. Taxonomic studies are currently investigating sequence based delineation of species (DNA barcoding, e.g. [6–8]), but reaching consensus is still undergoing [9]. Defining co-dominant and highly polymorphic molecular markers such as microsatellites available for diversity studies and cross geographical or ecological comparisons would be a valuable tool for the study of this species complex and would allow introducing genetic data complementary to the current genomic approaches [9]. Also, these markers might allow differentiating genetic pools that could reflect host adaptation or even possibly identify new species within strain pools (structuration via reduced gene flow, e.g. [6]). We successfully developed 39 microsatellite markers for this wide geographical and ecological range pathogen (Table 1).

2. Experimental design, materials and methods

Genomic DNA was extracted from seven strains of *Colletotrichum gloeosporioides*. Six microsatellite-enriched genomic libraries were produced following [10]. DNA was digested with RsaI and fragments of 500 bp were ligated into a pCR 4-TOPO vector. These were then used to transform One Shot TOP10 chemically competent Escherichia coli, producing a total of 1158 positives clones and 128 were sequenced on an ABI PRISM 3730XL automated sequencer, using T3 and T7 primers. Consensus sequences were obtained using ChromasPro 1.34 software [11]. Of these sequences, 21 were of poor quality, 24 did not show microsatellite region, 24 were sister clones, and 59 showed microsatellites (motifs of three repetitions or more). Forty-nine primers pairs were thus designed using Primer-3 [12] and PrimerSelect of DNAStar [13].

Download English Version:

https://daneshyari.com/en/article/4765139

Download Persian Version:

https://daneshyari.com/article/4765139

Daneshyari.com