

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data of sperm-entry inability in *Drosophila melanogaster* ovarian follicles that are depleted of s36 chorionic protein

Athanassios D. Velentzas, Panagiotis D. Velentzas¹, Stamatia Katarachia, Vassiliki E. Mpakou, Issidora S. Papassideri, Dimitrios J. Stravopodis^{*}

Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece

ARTICLE INFO

Article history: Received 7 February 2017 Received in revised form 20 March 2017 Accepted 31 March 2017 Available online 8 April 2017

Keywords: Chorion Drosophila Egg Follicle Oogenesis Ovary RNAi s36 Sperm

ABSTRACT

This paper presents data associated with the research article entitled "Targeted downregulation of s36 protein unearths its cardinal role in chorion biogenesis and architecture during Drosophila melanogaster oogenesis" [1]. Drosophila chorion is produced by epithelial follicle cells and one of its functional serving role is egg fertilization through the micropyle, a specialized narrow channel at the anterior tip of the egg [2]. Sperm entry during fertilization is necessary for the egg to complete meiosis [3]. D. melanogaster flies being characterized by severe downregulation of the s36 chorionic protein, specifically in the follicle-cell compartment of their ovary, appear with impaired fly fertility (Velentzas et al., 2016) [1]. In an effort to further investigate whether the observed infertility in the s36-targeted flies derives from a fertilization failure, such as the inability of sperm to pass through egg's micropyle, we mated females carrying s36-depleted ovaries with males expressing the GFP protein either in their sperm tails, or in both their sperm tails and sperm heads.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: dstravop@biol.uoa.gr (D.J. Stravopodis).

http://dx.doi.org/10.1016/j.dib.2017.03.052

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Correspondence to: Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou 157 84, Athens, Greece. Fax: + 30 210 727 4742.

¹ Present address: Department of Cancer Biology, Medical School, University of Massachusetts, Worcester, Massachusetts (MA), USA.

Subject area More specific sub- ject area	Biology Cell and Developmental Biology
Type of data	Confocal Laser Scanning micrographs
How data were acquired	Using a Nikon Eclipse C1 Confocal Laser Scanning Microscope (CLSM)
Data format	Analyzed data
Experimental factors	Female virgin control and s36-targeted flies were mated with dj-GFP or prota- mineB-eGFP; dj-GFP males. The deposited eggs were collected every one hour and observed under a Nikon CLSM
Experimental features	Comparison of successful fertilization levels between laid s36-depleted ovarian follicles and control ones
Data source location	
Data accessibility	All data are included in this article

Specification Table

Value of data

- Insemination and not sperm entry into mature follicles seems responsible for the activation of ovulation process in *D. melanogaster*: new prospects for control of oogenesis by sperm microenvironment.
- Flies carrying s36-depleted ovaries may serve as a primary model system for deciphering the sperm-regulated ovulation and egg-deposition rhythms in *D. melanogaster*, through the use of spermatozoa with various genetic backgrounds.
- Imaging and quantification of *D. melanogaster* fertilization via employment of transgenic -fluorescent- spermatozoa technology most likely provide a useful and valuable platform for the assessment of, other than s36, major chorionic-components' contribution to follicles' competence for efficient fecundity.

1. Data

In order to examine *Drosophila melanogaster* sperm's ability to penetrate ovarian egg's micropyle [2] and enter into oocyte's cytoplasm of the s36-downregulated follicles, we mated s36-targeted virgin female flies with males expressing either the don juan-GFP fusion protein (dj-GFP), or both the dj-GFP and Mst35Bb/ProtamineB-eGFP proteins (Fig. 1A and B). The *Drosophila* don juan (dj) protein is expressed along the axoneme of each sperm tail [3–4], while protamineB is specifically localized in sperm heads [5]. To validate sperm's GFP-mediated fluorescence in the transgenic male flies, their testes expressing either the dj-GFP (Fig. 1A) or both the dj-GFP and protamineB-eGFP proteins (Fig. 1B) were visualized under a CLSM, clearly revealing bright green staining patterns for both spermatozoa populations examined.

More than half in number of the freshly-laid eggs (n=90) obtained from control (c355-GAL4/+) female flies after they have been crossed to males expressing dj-GFP (Fig. 1C and G) proved to be successfully fertilized, with GFP-tagged sperm being readily detected in their cytoplasm. Similarly, a 67% mean value of laid eggs (n=105), derived from control female flies mated with protamineB-eGFP; dj-GFP transgene-carrying males, were also presented with GFP-tagged sperm (see, its coiled shape within the anterior region of the herein shown representative follicle) inside each fertilized egg's cytoplasm (Fig. 1D and G). In contrast, GFP-tagged sperm could not be detected inside the cytoplasm of the freshly-laid s36-depleted eggs produced by female flies that have been inseminated either by dj-GFP (n=110; Fig. 1E and G) or by dj-GFP and protamineB-eGFP transgene-containing males

Download English Version:

https://daneshyari.com/en/article/4765145

Download Persian Version:

https://daneshyari.com/article/4765145

Daneshyari.com