

Contents lists available at ScienceDirect

Data in Brief

Data Article

Data on the uptake and metabolism of testosterone by the common mussel, *Mytilus* spp.

Tamar I. Schwarz, Ioanna Katsiadaki, Benjamin H. Maskrey, Alexander P. Scott*

Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.

ARTICLE INFO

Article history: Received 24 February 2017 Accepted 28 March 2017 Available online 31 March 2017

Keywords: Mollusc Sulphate Steroid metabolism, androgen

ABSTRACT

This article provides data in support of the research article entitled "Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp." (T.I. Schwarz, I. Katsiadaki, B.H. Maskrey, A.P. Scott, 2017) [1]. The uptake of tritiated testosterone (T) from water by mussels is presented. The two main radioactive peaks formed from T and present in the fatty acid ester fraction of mussel tissues were shown to have the same elution positions on a thin layer chromatography plate as 17β hydroxy- 5α -androstan-3-one (DHT) and 5α -androstan- 3β , 17β diol $(3\beta,17\beta-A5\alpha)$. Reverse phase high performance liquid chromatography of the non-esterified (80% ethanol) fraction of the mussel tissue extracts also presented radioactive peaks at the elution positions of DHT and 3β ,17 β -A5 α . There was no evidence for sulfated T in this fraction. It was shown that aeration led to significant losses of radiolabeled testosterone from the water column.

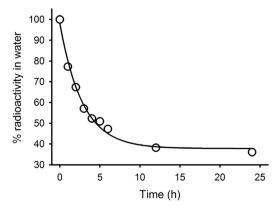
© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.jsbmb.2017.02.016

^{*} Corresponding author.

Specifications Table


Subject area	Biology
More specific subject area	Endocrinology
Type of data	Figures
How data was acquired	Scintillation counting, HPLC, TLC,
Data format	Analyzed
Experimental factors	Studying the rate of uptake of tritiated $T([^3H]-T)$ by live mussels and identifying the metabolites produced
Experimental features	Measuring rate of disappearance of $[^3H]$ -T from water in a vessel containing mussels, extracting and then separating the metabolites in tissue by liquid and thin layer chromatography.
Data source location	Portland Harbour, Dorset
Data accessibility	Data presented in this article

Value of the data

- The data provide supporting evidence to challenge the assumption that T found in the flesh of mussels is necessarily of endogenous origin.
- Identification of DHT and 3β , 17β -A5 α , both metabolites of T, in the ester fraction of mussel tissues has implications for the accuracy of T quantification in mussels from laboratory exposures and the field.
- The lack of testosterone sulfate in tissue extracts shows that sulfation does not play a major role in T metabolism in mussels, in contrast to E₂ metabolism.

1. Data

The data presented in this article show: the uptake of [3 H]-T from water by mussels (Fig. 1); thin layer chromatography (TLC) identification of tritiated 3β ,17 β -A5 α , T and DHT in the ester

Fig. 1. Removal of radioactivity by *Mytilus* spp. during a 24 h exposure (Experiment 3) in a single polythene bag containing 3.6 L water and 18 animals. Data are presented as percentage radiolabel remaining in the water at each sampling point (°). The curve represents the same data fitted to a three parameter exponential decay equation.

Download English Version:

https://daneshyari.com/en/article/4765215

Download Persian Version:

https://daneshyari.com/article/4765215

Daneshyari.com