Data in Brief 11 (2017) 61-67

Contents lists available at ScienceDirect

Data in Brief

Data Article

Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

Guy-Daniel Dutel, Patrick Langlois, David Tingaud, Dominique Vrel, Guy Dirras*

Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS UPR 3407, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

ARTICLE INFO

Article history: Received 6 October 2016 Received in revised form 8 November 2016 Accepted 11 January 2017 Available online 17 January 2017

Keywords: Spark Plasma Sintering Cold isostatic compaction Nickel powders Microstructure

ABSTRACT

Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS) are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area	Physics Powder metallurgy
Type of data	Images, Figures
How data was acquired	SEM (Carl Zeiss Supra 40 VP-FEG), EBSD (TexSEM OIM 5 Software), compression tests (Deben TM Microtesting machine).

* Corresponding author. *E-mail address:* dirras@lspm.cnrs.fr (G. Dirras).

http://dx.doi.org/10.1016/j.dib.2017.01.009

^{2352-3409/© 2017} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data format	Analyzed
Experimental	Commercial powders of different grain sizes, nanometric and micrometric, or a
factors	mixture of them were sintered using Spark Plasma Sintering (SPS), either directly
	from loose powders or after a Cold Isostatic Pressing (CIP) step.
Experimental	After polishing, samples were observed by SEM and EBSD, and compression tests
features	were performed to determine mechanical characteristics of processed bulk
	materials.
Data source	Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407, 99 avenue
location	Jean-Baptiste Clément, 93430 Villetaneuse, France.
Data accessibility	Data is with this article

Value of the data

- The data describe the influence of a pre-compaction step on the final microstructure after SPS.
- The data presents the influence of the nature of the initial powders.
- The data provides information on the influence of these microstructures on the resulting mechanical properties.
- Pre-compaction by CIP followed by SPS procedure can serve as a mean for Σ 3 grain boundaries engineering.
- Data shows that presence of Σ3 grain boundaries allows for a good compromise between compressive stress and strain to failure.

1. Data

Nanometric, micrometric and a 40% nanometric – 60% micrometric mixture of powders have been sintered using SPS, with an optional pre-compaction of the powders using Cold Isostatic Pressing. Density measurements are provided and EBSD investigations of the samples are presented. From these EBSD data, texture analysis has been performed, grain sizes determined and information on specific grains boundaries, namely Low-Angle Grain boundaries (LAGBs) and Σ 3 grain boundaries data is provided. The mechanical behavior under compression tests of the processed samples is presented.

Fig. 1. XRD patterns of the two types of powder used, showing the sole presence of Nickel.

Download English Version:

https://daneshyari.com/en/article/4765383

Download Persian Version:

https://daneshyari.com/article/4765383

Daneshyari.com