

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the positive synergic action of dimethylacetamide and trehalose on quality of cryopreserved chicken sperm

Fabio Mosca ^{a,*}, Manuela Madeddu ^a, Ahmad Abdel Sayed ^a, Luisa Zaniboni ^a, Nicolaia Iaffaldano ^b, Silvia Cerolini ^a

^a Department of Veterinary Medicine, University of Milan, via Trentacoste 2, 20134 Milan, Italy
^b Department of Agricultural, Environmental and Food Science, University of Molise, via De Sanctis, 86100 Campobasso. Italy

ARTICLE INFO

Article history: Received 4 October 2016 Accepted 15 November 2016 Available online 22 November 2016

ABSTRACT

This data article contains supporting information regarding the research article entitled "Combined effect of permeant and nonpermeant cryoprotectants on the quality of frozen/thawed chicken sperm" (Mosca et. al., 2016) [1]. The combined effect of the permeant cryoprotectants agent dimethylacetamide and the non-permeant cryoprotectants agent trehalose on the quality of frozen-thawed chicken semen was assessed. In particular, the quantitative dimethylacetamide/trehalose ratio was investigated freezing semen samples according to the following treatments: trehalose 0.1 M+0% dimethylacetamide (DMA-0), trehalose 0.1 M+3% dimethylacetamide (DMA-3), trehalose 0.1 M+6% dimethylacetamide (DMA-6). © 2016 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject areaBiology, Animal ScienceMore specific
subject areaCryoconservation of chicken semen

DOI of original article: http://dx.doi.org/10.1016/j.cryobiol.2016.10.001

* Corresponding author.

http://dx.doi.org/10.1016/j.dib.2016.11.059

2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: fabio.mosca1@unimi.it (F. Mosca).

Type of data How data was acquired	Table Fluorescence microscopy, SCA (Sperm Class Analyzer)
Data format	Analyzed
Experimental factors	The natural osmoprotectant trehalose (0.1 M) was combined with different level $(0-6\%)$ of the permeant cryoprotectant dimethylacetamide to prevent cryoda- mages in chicken semen.
Experimental features	Sperm quality was assessed before and after freezing/thawing in chicken semen processed for cryopreservation using a range of quantitative dimethylacetamide/ trehalose ratios to identify the most effective cryoprotective combination.
Data source location	Milano, Lodi (Italy)
Data accessibility	Data is available with this article

Value of the data

- Data presented in this paper confirm a positive synergic action of dimethylacetamide and trehalose on quality of frozen-thawed chicken sperm.
- These data encourage the investigation on the interaction between permeating cryoprotectants, like dimethylacetamide, and natural osmoprotectants, such as trehalose, to improve the success of sperm cryopreservation in birds.
- These data contribute for designing further experiments aiming to identify a chicken semen cryopreservation reference procedure.

1. Data

Data include all sperm quality parameters recorded in fresh and cryopreserved chicken semen (Table 1) and the recovery rates of viable and motile sperm after freezing-thawing (Table 2). The most effective cryoprotectant combination includes both trehalose and DMA; in contrast, the absence of DMA (DMA-0) is responsible for more severe loss in sperm quality.

Table 1

Sperm quality parameters (LSMeans \pm SE) measured in fresh semen and in semen frozen according the following treatments: 0.1 M trehalose+0% dimethylacetamide (DMA-0), 0.1 M trehalose+3% dimethylacetamide (DMA-3), 0.1 M trehalose+6% dimethylacetamide (DMA-6).

Sperm parameters ^a	Fresh	DMA-0	DMA-3	DMA-6	S.E.
Viability (%)	87.9 ^A	4.3 ^B	31.8 ^C	37.1 ^C	2.0
Motility (%)	81.7 ^A	8.0 ^B	24.2 ^C	29.1 ^C	2.1
Progressive motility (%)	14.1 ^A	0.1 ^B	1.5 ^B	1.2 ^B	1.3
VCL (µm/s)	47.4 ^A	25.7 ^B	35.6 ^C	33.7 ^C	1.5
VSL (µm/s)	17.0 ^A	4.6 ^B	10.1 ^C	9.3 ^C	0.8
VAP $(\mu m/s)$	28.3 ^A	10.2 ^B	18.4 ^C	17.8 ^C	1.0
LIN (%)	35.7 ^A	17.9 ^B	28.1 ^C	27.7 ^C	1.0
STR (%)	59.8 ^A	45.2 ^B	54.4 ^C	52.5 ^C	1.1
WOB (%)	59.6 ^A	39.3 ^B	51.6 ^C	52.7 ^C	0.9
ALH (µm)	2.8 ^A	0.9 ^B	2.5 ^C	2.7 ^A	0.1
BCF (Hz)	7.9 ^A	0.7 ^B	6.1 ^C	5.4 ^C	0.4

^{A,B} Values within each row with different superscript letters are significantly different (p < 0.001).

^a Viability, the percentage of viable spermatozoa; motility, the percentage of motile spermatozoa; progressive motility, spermatozoa swim forward fast in a straight line; VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN (VSL/VCL \times 100), linearity; STR (VSL/VAP \times 100) straightness; WOB (VAP/VCL \times 100); ALH, amplitude of lateral head displacement; BCF, beat cross frequency.

Download English Version:

https://daneshyari.com/en/article/4765455

Download Persian Version:

https://daneshyari.com/article/4765455

Daneshyari.com