

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on characterization of nano- and micro-structures resulting from glycine betaine surfactant/kappa-carrageenan interactions by Laser Scanning Confocal Microscopy and Transmission Electron Microscopy

Cédric Gaillard ^{a,*}, Yunhui Wang ^{b,c}, Rudy Covis ^{b,c}, Thomas Vives ^{b,c}, Maud Benoit ^d, Thierry Benvegnu ^{b,c,**}

^a U.R. 1268 Biopolymères Interactions Assemblages INRA BP-71, 627 Rue de la Géraudière, 44316 Nantes Cedex 3, France

^b Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR6226, 11 allée de Beaulieu, CS50837,

35708 Rennes Cedex 7, France

^c Université de Bretagne Loire, France

^d Centre d'étude et de Valorisation des Algues, Presqu'île de Pen Lan – BP3, 22610 Pleubian, France

ARTICLE INFO

Article history: Received 27 August 2016 Received in revised form 12 September 2016 Accepted 19 September 2016 Available online 22 September 2016

Keywords: Glycine betaine surfactant/kappa-carrageenan complexes Nano- and micro-structures Electrostatic interactions Laser Scanning Confocal Microscopy and Transmission Electron Microscopy

ABSTRACT

This article contains data on the Laser Scanning Confocal Microscopy (LSCM) and Transmission Electron Microscopy (TEM) images related to multi-scaled self-assemblies resulting from 'green' cationic glycine betaine surfactant/anionic kappa-carrageenan interactions. These data gave clear evidence of the evolution of the micron-, nano-sized structures obtained at two surfactant/ polymer molar ratios (3.5 and 0.8) and after the dilution of the aqueous dispersions with factors of 5 and 10 times. This data article is related to the research article entitled, "Monitoring the architecture of anionic κ -carrageenan/cationic glycine betaine amide surfactant assemblies by dilution: A multiscale approach" (Gaillard et al., 2017) [1].

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.carbpol.2016.08.027

http://dx.doi.org/10.1016/j.dib.2016.09.026

2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author.

^{**} Corresponding author at: Université de Bretagne Loire, France.

E-mail addresses: cedric.gaillard@nantes.inra.fr (C. Gaillard), thierry.benvegnu@ensc-rennes.fr (T. Benvegnu).

Subject area	Chemistry, Material Sciences, Soft Matter
More specific sub- ject area	Structural analysis of nano-, micro- structures
Type of data	Figures
How data was acquired	Laser Scanning Confocal Microscopy (LSCM, Inverted Nikon A1 laser scanning confocal microscope (LSCM) and Transmission Electron Microscopy (TEM, JEOL JEM-1230 operated at 80 kV and equipped with a LaB6 filament
Data format	Analyzed
Experimental factors	LSCM: Aqueous dispersions of the surfactant/polysaccharide complexes were stained with 0.02% w/w acridine orange
	TEM: Sample-coated TEM grid was successively placed on a drop of an aqueous solution of uranyl acetate $(2\% \text{ w/w})$ for negatively staining, and on a drop of distilled water for rinsing. The grid was then air-dried before introducing them in the electron microscope
Experimental	LSCM: samples viewed with Plan Fluor $4 \times$ or $10 \times$ Nikon objectives or with
features	Plan Apo $20 \times$ or $40 \times$ Nikon objective by scanning using excitations brought about by the 488 nm emission and 561 nm emission lines of the He–Ne laser, and light emission was collected via a photomultiplier through a 500–530 nm and 570–620 nm band-pass filters, respectively. Images were processed using the NIS-Element
	TEM: micrographs were recorded on a Gatan 1.35 K \times 1.04 K \times 12 bit ES500W
	CCD camera.
Data source location	U.R. 1268 Biopolymères Interactions Assemblages INRA BP-71, 627 Rue de la Géraudière, 44316 Nantes Cedex 3, France
Data accessibility	Data is with this article

Specifications Table

Value of the data

- The given data provide structural information of particles based on multi-components at the micron- and nanometer scale range by using Laser Scanning Confocal Microscopy (LSCM) [2–4], and Transmission Electron Microscopy (TEM).
- The data provided by us help to understand the mechanism of formation of self-assemblies resulting from electrostatic interactions between multi-components.
- The data provided by us show influence of dilution on the architecture of assemblies composed of anionic polymers/cationic surfactants derived from renewable resources.
- The given data are useful to other researchers for developing applications of multi-scaled selfassemblies by mixing simply polymers and surfactants of opposite charge.

1. Data

Data refers to the LSCM and TEM experiments of 100% bio-sourced glycine betaine (GB) surfactant possessing a $C_{18:1}$ oleic fatty chain and kappa-carrageenan under pure forms in aqueous solutions (Fig. 1) or after their mixing at two different GB surfactant/ κ -carrageenan molar ratios equal to 3.5 (sample A1: Figs. 2 and 3) and 0.8 (sample B1: Figs. 8 and 9) and after a dilution with a factor of 5 (*ratio 3.5* (sample A2): Figs. 4 and 5; *ratio 0.8* (sample B2): Figs. 10 and 11) and 10 (*ratio 3.5* (sample A3): Figs. 6 and 7; *ratio 0.8* (sample B3): Figs. 12 and 13) times. TEM observation shows the gradual dissociation of assemblies' nanostructures whereas LSCM identifies the distribution of cationic surfactant and anionic polysaccharide.

Download English Version:

https://daneshyari.com/en/article/4765461

Download Persian Version:

https://daneshyari.com/article/4765461

Daneshyari.com