

Contents lists available at ScienceDirect

Data in Brief



### Data Article

# Data on diverse roles of helix perturbations in membrane proteins



## Ashish Shelar, Manju Bansal\*

Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India

#### ARTICLE INFO

Article history: Received 10 August 2016 Received in revised form 1 October 2016 Accepted 25 October 2016 Available online 1 November 2016

*Keywords:* Membrane proteins Helix kink Helix interactions

#### ABSTRACT

The various structural variations observed in TM helices of membrane proteins have been deconstructed into 9 distinct types of helix perturbations. These perturbations are defined by the deviation of TM helices from the predominantly observed linear  $\alpha$ -helical conformation, to form  $3_{10^-}$  and  $\pi$ -helices, as well as adopting curved and kinked geometries. The data presented here supplements the article 'Helix perturbations in Membrane Proteins Assist in Inter-helical Interactions and Optimal Helix Positioning in the Bilayer' (A. Shelar, M. Bansal, 2016) [1]. This data provides strong evidence for the role of various helix perturbations in influencing backbone torsion angles of helices, mediating inter-helical interactions, oligomer formation and accommodation of hydrophobic residues within the bilayer. The methodology used for creation of various datasets of membrane protein families (Sodium/Calcium exchanger and Heme Copper Oxidase) has also been mentioned.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

#### **Specifications Table**

| Subject area                    | Biology                                                |
|---------------------------------|--------------------------------------------------------|
| More specific sub-<br>ject area | Membrane protein structure and folding, Bioinformatics |

DOI of original article: http://dx.doi.org/10.1016/j.bbamem.2016.08.003

http://dx.doi.org/10.1016/j.dib.2016.10.023

<sup>\*</sup> Corresponding author.

E-mail address: mb@mbu.iisc.ernet.in (M. Bansal).

<sup>2352-3409/© 2016</sup> The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

| Type of data<br>How data was<br>acquired | Tables and figures<br>Data was retrieved from public databases                                                                                                                       |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data format                              | Analyzed data                                                                                                                                                                        |
| Experimental factors                     | Protein structures were retrieved from OPM database and analyzed. Sequence<br>and structural alignments of proteins were performed using Clustal $\Omega$ and<br>MAPSCI respectively |
| Experimental<br>features                 | This work uses X-ray crystal structure data of membrane proteins that has been deposited in the Protein Data Bank (PDB)                                                              |
| Data source<br>location                  | Bangalore, India                                                                                                                                                                     |
| Data accessibility                       | Data is within this article. Membrane protein structures aligned along the Z-axis can be readily retrieved from the OPM database (http://opm.phar.umich.edu/download.php).           |

#### Value of the data

- The data on different types of helices shows that, apart from the commonly observed  $\alpha$ -helices,  $3_{10}$  and  $\pi$ -helices are also present within the bilayer and have varying lengths as well as distinct sequence signatures. This data provides experimentalists with options to model new  $3_{10}$  and  $\pi$ -helices in the bilayer and reorient the locations of active sites in TM helices.
- The data on backbone torsion angle variation in perturbed helices indicates that in these regions the disrupted hydrogen bonds lead to free NH– and C=O groups that mediate inter-helical interactions. This information can be used by the scientific community to engineer the desired inter-helical interactions at appropriate locations in TM helices.
- The data showing conservation of a kink in proteins from the Sodium/Calcium exchanger family highlight its crucial functional role in this family. This data can be used for homology modeling of proteins within this family by computational biologists.

#### 1. Data

The data used in this analysis has been generated after a detailed structural examination of membrane proteins. This structural data provides solid evidence for the utility and various roles of perturbed helices in membrane proteins. See Figs. 1–17 and Tables 1–5.

#### 2. Experimental design, materials and methods

Structural analysis of membrane protein structures was performed after they were downloaded from the Orientation of Proteins in Membrane (OPM) database [9]. The identification of secondary structures was carried out using Assignment of Secondary Structures in Proteins (ASSP) [10] and non-bonded interactions were identified using MolBridge [11]. Next, we identified geometries of helical fragments using Helanal-Plus [2] and computed the backbone torsion angles ( $\phi$ – $\psi$ ). Multiple sequence alignment of protein sequences was carried out using Clustal $\Omega$  [12].

We prepared datasets of proteins belonging to Sodium Calcium family of transporters as mentioned in [1] to examine conservation of kinks in functionally important helices. A dataset of proteins belonging to Heme Copper Oxidase (HCO) superfamily was created to gain insights about the presence of the  $\pi$ -helix in each protein (Table 3). To understand the variation if any in the  $\pi$ -helix within different types of HCOs, we analyzed two crystal structures from the A-type, one from B-type and Download English Version:

# https://daneshyari.com/en/article/4765517

Download Persian Version:

https://daneshyari.com/article/4765517

Daneshyari.com