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a b s t r a c t

Empirically, cointegration and stochastic covariances, including stochastic volatilities, are statistically sig-

nificant for commodity prices and energy products. To capture such market phenomena, we develop a

continuous-time dynamics of cointegrated assets with a stochastic covariance matrix and derive the joint

characteristic function of asset returns in closed-form. The proposed model offers an endogenous explana-

tion for the stochastic mean-reverting convenience yield. The time series of spot and futures prices of WTI

crude oil and gasoline shows cointegration relationship under both physical and risk-neutral measures. The

proposed model also allows us to fit the observed term structure of futures prices and calibrate the market-

implied cointegration relationship. We apply it to value options on a single commodity and on multiple

commodities.
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1. Introduction

Commodity derivative market had tremendous growth in recent

years. A number of stylized facts about commodity prices have been

uncovered in the literature. Although Bessembinder, Coughenour,

Seguin, and Smoller (1995) and Schwartz (1997) observe the mean

reversion of commodity spot prices, other researchers have identified

a long-term equilibrium relationship between multiple commodi-

ties, termed cointegration. In addition, Trolle and Schwartz (2009)

recognize the unspanned stochastic volatility in commodity mar-

kets, particularly that in the crude oil market. Cointegration and

stochastic volatility are important ingredients in derivatives pricing

and hedging. Wong and Lo (2009) investigate the valuation of op-

tions on a single underlying asset following a mean-reverting log-

normal process with stochastic volatility. Duan and Pliska (2004)

consider the valuation of crack spread options on two cointegrated

assets. They employ an error correction model with GARCH to value

the spread option, but assume the correlation between the two as-

sets to be a constant value. Dempster, Medova, and Tang (2008)

model the spread process of cointegrated assets directly using two

latent factors, as the correlation between asset returns is notori-

ously difficult to model. Marroquín-Martínez and Moreno (2013) and
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Rambeerich, Tangman, Lollchund, and Bhuruth (2013) discuss

computational methods for option valuation under multifactor

models.

Not only are volatilities stochastic, but the correlations between

pairs of assets in the energy market are also highly stochastic (see,

e.g., Alexander, 1999; Kouvelis, Li, & Ding, 2013). Thus assuming a

constant correlation structure is inappropriate. In this paper, we pro-

pose a tractable continuous-time model that simultaneously cap-

tures cointegration, stochastic volatilities, and stochastic correlations.

More specifically, the cointegration structure is reflected by the diffu-

sion limit of the discrete error correction model consistent with Duan

and Pliska (2004), Chiu and Wong (2011) and Chiu and Wong (2012).

Meanwhile, the stochastic covariance matrix is assumed to follow

the continuous-time Wishart autoregressive (WAR) process proposed

by Bru (1991). Gourieroux, Jasiak, and Sufana (2009) provide a thor-

ough analysis of the properties of WAR processes in both discrete and

continuous-time settings. Using the WAR process to model the co-

variance matrix is appealing as it does not require additional con-

straints to ensure the positivity or symmetry of the matrix. Buraschi,

Porchia, and Trojani (2010) investigate stochastic correlation risk in

asset allocation using a WAR process. Chiu and Wong (2014) gener-

alize it to the mean-variance portfolio objective. Gourieroux and Su-

fana (2010) exploit the use of WAR processes for multivariate stochas-

tic volatilities. Under the proposed model, we derive the closed-form

solutions for the joint characteristic function of asset returns and fu-

tures contracts.
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The convenience yield, defined as the flow of benefit of im-

mediate ownership of a physical commodity, is regarded as a

distinguished feature of commodities as an asset class. Casassus and

Collin-Dufresne (2005) document that mis-specification of the con-

venience yield can have a significant impact on option valuation

and risk management. Therefore, correctly modeling the convenience

yield process is a significant step towards modeling commodity-

related contingent claims. We here document the stylized fact re-

garding the dynamics of the commodity convenience yield predicted

by the proposed model and the traditional theory of storage, respec-

tively. One insight of our framework is that the proposed model can

be interpreted as arbitrage-free models of commodity spot prices,

where the convenience yield is of stochastic volatility. To our knowl-

edge, the implications of cointegration to stochastic convenience

yield have never been explored in the literature. Using daily data

on WTI crude oil and gasoline, we perform three regression tests on

the market-implied convenience yield, to explore the economical and

statistical significance of our model specification in commodity mar-

ket. Although our empirical results reconfirm the theory of storage

in Routledge, Seppi, and Spatt (2000), it also strongly support the

hypothesis that cointegration is an important contributor to conve-

nience yields. The overall explanatory power of our proposed model

is much stronger than that of the traditional theory of storage. It im-

plies that commodity market anticipates cointegration relationship

under both physical and risk-neutral measures.

In the literature, Hilliard and Reis (1998) and Casassus and

Collin-Dufresne (2005) assume exogenous mean-reverting conve-

nience yield model to improve the valuation of commodity deriva-

tives. Under the proposed model, cointegrating factors form a

mean-reverting system and are contributors to convenience yield.

Therefore, our model offers an endogenous explanation for the

stochastic mean-reverting convenience yield. In addition, as the coin-

tegrating factor is a linear combination of log-spot-prices, and spot

prices exhibit stochastic correlations and volatilities, our model also

predicts that the volatility of the convenience yield is stochastic.

This prediction coincides exactly with Broadie, Detemple, Ghysels,

and Torres (2000), who use a non-parametric approach to show that

putting the stochastic dividend and volatility together improves em-

pirical option prediction. Furthermore, the proposed model allows

the correlation structure between spot prices and convenience yields

be time-varying, as desired by Routledge et al. (2000).

The proposed model is also appealing in terms of calibration pro-

cedures as it can exactly fit to the market-observed term structure

of futures prices. We further develop a way to individually filter out

the risk-neutral cointegration relationship by examining the elastic-

ity of futures prices to spot prices. The calibrated characteristic func-

tion can be applied to the valuation of options on a single commod-

ity and on multiple commodities using fast Fourier transform (FFT)

techniques.

The remainder of this paper is organized as follows. Section 2

presents the proposed model under the physical measure and derives

the joint characteristic function of asset returns. Section 3 examines

the stylized facts of convenience yield process predicted by the pro-

posed model and performs comprehensive empirical analysis using

crude oil and gasoline data to demonstrate the economical and statis-

tical significance of our model specification. Section 4 discusses the

calibration of the model and applies it to the pricing of commodity

derivatives. Section 5 concludes the paper.

2. The model

This section introduces and studies a continuous-time dynamics

of cointegrated assets with stochastic covariance. To better under-

stand our model and its implications, we start reviewing the two-

asset case of the continuous-time cointegration model of Phillips

(1991) and Duan and Pliska (2004). A stochastic covariance ma-

trix is further introduced to simultaneously capture cointegration

and stochastic covariances, which enables explicit formulation of

joint characteristic function. We also discuss the corresponding risk-

neutral asset dynamics and closed-form pricing of futures contract.

2.1. Review of the continuous-time cointegration model

We start with the spot-price process of two risky assets, S1(t) and

S2(t), with a constant covariance matrix. Let Xj(t) = ln Sj(t) for j = 1, 2.

The continuous-time cointegration model of Phillips (1991) and Duan

and Pliska (2004) under the physical probability measure is given by

dX1(t) =
[
θ1 − κ11X1(t) − κ12X2(t) + λ1σ

2
1

]
dt + σ1 dZ̃1

dX2(t) =
[
θ2 − κ21X1(t) − κ22X2(t) + λ2σ

2
2

]
dt + σ2 dZ̃2, (1)

where Z̃1 and Z̃2 are correlated Wiener processes with correlation co-

efficient ρ̃, and other parameters, i.e., θ i, κ ij, λi, and σ i for i, j = 1, 2,

are constant values. In (1), λ1 and λ2 are market prices of risks. θ1

and θ2 are the equilibrium mean level of the log-asset values. If κ12 =
κ21 = 0, X1 and X2 are mean-reverting assets individually. Let κ be the

2 × 2 matrix collecting κ ij, for i, j = 1, 2. (1) is said to be a cointegra-

tion system if two eigenvalues of κ are non-negative and at least one

of them is positive. If �e denotes an eigenvector associated with a pos-

itive eigenvalue of κ , [X1(t)X2(t)] · �e is a cointegrating factor of the

system (1). The covariance matrix between X1(t) and X2(t) is constant

and deduced to be

V =
(

σ 2
1 ρ̃σ1σ2

ρ̃σ1σ2 σ 2
2

)
.

However, such a model is unrealistic for certain circumstances. For

example, Alexander (1999) pointed out that the correlation between

pairs of assets in the energy market is highly stochastic. In this paper,

we propose to model the covariance matrix V as a stochastic matrix

following the continuous-time Wishart autoregressive process.

2.2. The proposed model of cointegration and stochastic covariances

Consider n risky assets whose prices at time t are represented in

an n-dimensional vector St. The n × n covariance matrix at time t

denoted by Vt is stochastic and positive definite. We postulate the

joint dynamics of logarithmic spot prices Xt = ln St and Vt under the

physical measure P as

dXt = [θ (t) − κXt + (Tr(D1Vt ), . . . , Tr(DnVt ))
′]dt +

√
Vt dZP

t , (2)

dVt = (βQ ′Q + MVt + Vt M′)dt +
√

Vt dWP
t Q + Q ′(dWP

t

)′√
Vt , (3)

where ZP
t ∈ Rn and WP

t ∈ Rn×n are a vector Brownian motion and a

matrix Brownian motion under the physical measure P, respectively.

The vector θ (t) represents the equilibrium mean level of the log-asset

values against time. κ is an n × n constant matrix of cointegration

coefficients. If κ is a positive diagonal matrix, all of the individual as-

sets are stationary and exhibit mean-reversion. β is a scalar, such that

β > n − 1, and M and Q are n × n constant real square matrices. Tr

(·) denotes the trace operator. Q′ is the (unconjugated) transpose of

matrix Q.
√

Vt is the positive symmetric square root of Vt such that√
Vt

√
Vt = Vt . The continuous-time process of the stochastic covari-

ance matrix in (3) is essentially the continuous-time Wishart autore-

gressive (WAR) process introduced by Bru (1991). The WAR process

ensures that, at any point in time, the stochastic covariance matrix

is positive definite. Tr(DiVt) in (2) represents a risk premium of Vt. If

Q, M, and WP
t are all diagonal matrices, Vt is also a diagonal matrix

with each of its diagonal elements following the stochastic volatility

model of Heston (1993) and therefore our model embraces the model

of Wong and Lo (2009) when n = 1.
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