Dyes and Pigments 148 (2018) 465-473



Contents lists available at ScienceDirect

### Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig



# Facile preparation of WO<sub>3</sub>/PEDOT:PSS composite for inkjet printed electrochromic window and its performance for heat shielding



Cai-Wan Chang-Jian <sup>a</sup>, Er-Chieh Cho <sup>b</sup>, Shih-Chieh Yen <sup>c</sup>, Bo-Cheng Ho <sup>c</sup>, Kuen-Chan Lee <sup>d</sup>, Jen-Hsien Huang <sup>e</sup>, Yu-Sheng Hsiao <sup>c</sup>, \*

<sup>a</sup> Department of Mechanical and Automation Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, 84001, Taiwan

<sup>b</sup> Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan <sup>c</sup> Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan District, New Taipei City, 24301, Taiwan

<sup>d</sup> Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City, 106, Taiwan

<sup>e</sup> Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, No.2, Zuonan Rd., Nanzi District, Kaohsiung City, 81126,

Taiwan

#### ARTICLE INFO

Article history: Received 21 July 2017 Received in revised form 28 August 2017 Accepted 12 September 2017 Available online 18 September 2017

Keywords: Electrochromic WO<sub>3</sub> PEDOT:PSS Inkjet printing Device Smart window

#### ABSTRACT

In this study, we have prepared an electrochromic (EC) ink composed of WO<sub>3</sub> nanoparticles and poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS). The ink formulation can be processed through inkjet-printing or spray coating to deposit high-quality EC layers. The PEDOT:PSS acts as an conductive binder to connect the WO<sub>3</sub> nanoparticles leading to reduced impedance and better electrochemical properties. The WO<sub>3</sub>/PEDOT:PSS (PH1000) exhibits an optical modulation of 54.1%, a response time of 1.1 s, and a coloration efficiency of 83.87 cm<sup>2</sup>/C. A hybrid type electrochromic device (ECD) incorporated with WO<sub>3</sub>/PEDOT:PSS with excellent durability has been fabricated. The performance of WO<sub>3</sub>/PEDOT:PSS based ECD for sun shielding property is also evaluated. The ECD can efficiently block the sunlight and reduce solar heat gain. As a result, the indoor temperature can be modulated from 32.7 °C (bleached state) to 29.4 °C (darken state) under illumination.

© 2017 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Electrochromism is the phenomenon displayed by electroactive materials that show a reversible color change when a small DC voltage is applied. EC materials have been shown much promising properties such as low power consumption, no limitation of view angle and excellent memory characteristic under open circuit condition. As the color change is persistent and energy need only be applied to affect a change, electrochromic materials are applied for smart window and used to control the amount of light and heat allowed to pass through windows [1,2]. Another popular application is in the automobile industry where it is used to switchable rear-view mirrors in various lighting conditions.

Various types of materials can be used to construct electrochromic devices (ECDs) such as inorganic materials [3-6], conjugated polymers [7-13] and small molecules [14-18]. Among the inorganic materials, transition metal oxides are a large family of materials possessing various interesting properties in the field of electrochromism. Tungsten oxide (WO<sub>3</sub>), has been the most extensively studied material, used in the production of electrochromic windows or smart glass due to its high coloration efficiency and good cyclic stability [19-23]. In recent years main attention has been focused on nanostructured WO<sub>3</sub> prepared by using a variety of techniques including plasma sputtering [24], electrophoretic deposition [25], hydrothermal [26], chemical vapor deposition [27], electrospinning [28], Langmuir–Blodgett [29] and lay-by-layer deposition [30]. Although the WO<sub>3</sub> films prepared from these approaches can deliver attractive EC performance, the fabrication process is difficult to be scaled up. Additionally, the lowtemperature and solution process is the basic requirement for the next generation of flexible ECDs. Inkjet printing [31] is a low-cost and low-temperature method which can process WO<sub>3</sub> on various substrates. Moreover, the inkjet printing can pattern the EC materials on a desirable location without additional lithography process or complicated masking steps. The thickness of the EC layer also can be precisely controlled by changing the number of printed layers.

<sup>\*</sup> Corresponding author. Tel.: +886 2 29089899x4458. E-mail address: yshsiao@mail.mcut.edu.tw (Y.-S. Hsiao).

However, the problems of the spray coating or inkjet printing commonly encountered are the blockage of nozzle due to the too large particle or aggregation and the crack of the resultant films. Moreover, the resistance of the resultant films should be very large due to the much grain boundary formed by the WO<sub>3</sub> nanoparticles. Therefore, the key to achieve uniform and electrochemically active WO<sub>3</sub> film by using inkjet printing method rely on the following characteristics: (1) preparation of uniform  $WO_3$  nanoparticle: (2) efficient dispersion and (3) introduction of conductive binder and dispersant. In the recent years, the conducting polymer, PEDOT:PSS, has been demonstrated as an efficient surfactant and binder for WO<sub>3</sub> based EC application [32]. Both PEDOT:PSS and WO<sub>3</sub> are cathodically coloring materials, and can be simultaneously changed colors between colored and bleached state. In addition, the commercial PEDOT:PSS has been demonstrated as an efficient surfactant to disperse much nanomaterials such as carbon nanotube [33], TiO<sub>2</sub> [34], Fe<sub>3</sub>O<sub>4</sub> [35]. Therefore, the PEDOT:PSS is an excellent candidate used as a conductive binder to prepared WO<sub>3</sub> suspension for inkjet printing.

In this study, we tend to develop an EC ink which can satisfy the three requirements described above. This is an easy-to-process and economical method to prepare stable and well-dispersed EC formulation which can be readily deposited on various substrates by inkjet printing. We applied a wet-grinding method to miniaturizate and disperse pure  $WO_3$  powder with PEDOT:PSS as a polymeric and conductive surfactant. The WO<sub>3</sub>/PEDOT:PSS solution after grinding can form a stable colloidal without precipitation. With the polymeric nature of PEDOT:PSS, the resultant composite films prepared by inkjet printing are crack-free with uniform surface. The PEDOT:PSS can also act as a conductive binder to facilitate the electron transport between the WO<sub>3</sub> nanoparticles. Most importantly, the proposed strategy is not only useful for WO<sub>3</sub> but also other inorganic materials. We also performed a systematic investigation for the effect of conductivity of PEDOT:PSS on the EC performance of hybrid films. Moreover, A hybrid type electrochromic device was also fabricated and the sun shielding property is also evaluated for the first time. The resulting EC films reveal a large optical modulation (54.1%), fast response time (1.1 s) and a coloration efficiency of 83.87 cm<sup>2</sup>/C. The hybrid ECD also shows outstanding sun shielding property which can decrease the indoor temperature from 32.7 °C (bleached state) to 29.4 °C (darken state) under illumination.

#### 2. Experimental section

#### 2.1. Preparation of WO<sub>3</sub>/PEDOT solution

At first, the commercial WO<sub>3</sub> powder (Aldrich, > 99.0%) was sonicated in ethanol with a concentration of 1.0 wt%. After sonication for 1 h, the WO<sub>3</sub> suspension was mixed with 10 vol% of the PEDOT:PSS with stirring. Then, the high-energy ball milling was performed at a speed of 2000 rpm at room temperature using a circulation-type grinder (JBM-C020). After grinding for 12 h, the WO<sub>3</sub> can be dispersed well without precipitation. The WO<sub>3</sub> suspension can maintain its highly disperse without aggregation for at last three month.

#### 2.2. Fabrication of ECDs

The ECDs were fabricated by assembling two ITO substrates  $(3.0 \times 4.0 \text{ cm}^2)$  with a cell gap of 60 µm (DuPont Surlyn<sup>®</sup>). Before assembling of the ECD, the ITO substrates cleaned by isopropyl alcohol and treated with O<sub>2</sub> plasma. At first, the WO<sub>3</sub>/PEDOT:PSS composite was deposited on the ITO substrate through spray coating. Then, the electrolyte solution was dropped onto the WO<sub>3</sub>/

PEDOT:PSS modified ITO substrate. Subsequently, the working electrode was covered with a blank ITO substrate. The electrolyte used to fill the ECDs was composed of 0.01 M 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 0.1 M LiClO<sub>4</sub> in acetonitrile (ACN).

#### 2.3. Charaterization

A IEOL 2010 transmission electron microscope (TEM) was used to examine the morphology and particle size of the WO<sub>3</sub> nanoparticles. The crystalline structures of WO<sub>3</sub> were characterized using grazing-incidence X-ray diffraction (XRD) (GIXRD; Philips PANalytical X'Pert PRO MRD apparatus; Cu Ka radiation); the incident X-ray beam angle was fixed above the critical angle at 5°. The zeta potential of the WO<sub>3</sub> was measured by the Zetasizer (Nano-ZS) from Malvern Instruments and its software, Dispersion Technology Software (DTS). The zeta potential of WO<sub>3</sub> was recorded under a PH value of 7.0 with a concentration of 0.1 wt%. The surface morphologies of the WO<sub>3</sub>/PEDOT:PSS films were investigated using scanning electron microscopy (SEM, Hitachi S-4700) and atomic force microscope (AFM, Digital Instrument NS 3a controller equipped with a D3100 stage). The absorbance and transmittance spectra of the EC films were obtained using a UV-Vis spectrophotometer (GBC Cintra 2020). All the electrochemical experiments were performed using Autolab potentiostat/galvanostat (Eco Chemie, model PGSTAT30) at room temperature. Cyclic voltammetry (CV) was performed using a three-electrode cell with 0.1 M LiClO<sub>4</sub>/ACN as electrolyte, ITO-glass modified with WO<sub>3</sub>/PEDOT:PSS as the working electrode, a platinum sheet as the counter electrode, and nonaqueous  $Ag/Ag^+$  as the reference electrode. The impedance test was carried out at 10 mV amplitude in frequency range from  $10^{-1}$ ~ $10^{4}$  Hz in 0.1 M LiClO<sub>4</sub>/ACN solution. The thermal image of the EC window was recorded by an infra-red thermograph (TiX 1000). Raman spectrum and mapping were recorded using a WITEC confocal spectrometer with 600 lines/mm grating, and 514.5 nm excitation. The temperature of the ECD window was recorded by an infra-red thermograph (TiX 1000).

#### 3. Results and discussion

The TEM images and their corresponding selected area electron diffraction (SAED) of WO<sub>3</sub> powder before and after grinding are shown in Fig. 1a and b. The starting material reveals a clear crystal structure with a particle size ranged between 50 and 500 nm. After grinding, the structure of WO<sub>3</sub> is destroyed and broken into much thin and small sheet-like particle. The particle size also decreases dramatically to less than 20 nm. The SAED as shown in the inset also suggests the crystallinity of WO<sub>3</sub> is considerably weaker after grinding process. Fig. 1c presents the XRD of raw and ground WO<sub>3</sub> powder. The XRD pattern can be indexed to a pure phase of monoclinic for the raw WO<sub>3</sub> with strong diffraction peaks. In comparison, the XRD pattern of ground WO<sub>3</sub> shows a significant broadening and simultaneous decrease in intensity, indicating the decrease in grain size during the grinding process. The zeta potential of raw WO<sub>3</sub> and ground WO<sub>3</sub> is also shown in Fig. 1d. The negative value of both raw and ground WO<sub>3</sub> is due to the hydroxyl group on the surface of WO<sub>3</sub>. The zeta potential of raw and ground WO<sub>3</sub> is -14.4 and -38.5 mV, respectively. A more negative zeta potential corresponds to a larger repulsive electrostatic forces between particle surfaces, and consequently a more stable colloid suspension. Generally, the absolute values of zeta potentials on the particle surfaces should be greater than 40 mV to maintain a relatively stable suspension.

The surface morphology of the PEDOT:PSS, WO<sub>3</sub> and hybrid film are also investigated by SEM and AFM analysis. The PEDOT:PSS film reveals a smooth and featureless morphology as shown in Fig. 2a.

Download English Version:

## https://daneshyari.com/en/article/4765741

Download Persian Version:

https://daneshyari.com/article/4765741

Daneshyari.com