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a b s t r a c t

Given a set N, a pairwise distance function d and an integer number m, the Dispersion Problems (DPs) require

to extract from N a subset M of cardinality m, so as to optimize a suitable function of the distances between

the elements in M. Different functions give rise to a whole family of combinatorial optimization problems.

In particular, the max-sum DP and the max-min DP have received strong attention in the literature. Other

problems (e.g., the max-minsum DP and the min-diffsum DP) have been recently proposed with the aim to

model the optimization of equity requirements, as opposed to that of more classical efficiency requirements.

Building on the main ideas which underly some state-of-the-art methods for the max-sum DP and the max-

min DP, this work proposes some constructive procedures and a Tabu Search algorithm for the new problems.

In particular, we investigate the extension to the new context of key features such as initialization, tenure

management and diversification mechanisms. The computational experiments show that the algorithms

applying these ideas perform effectively on the publicly available benchmarks, but also that there are some

interesting differences with respect to the DPs more studied in the literature. As a result of this investigation,

we also provide optimal results and bounds as a useful reference for further studies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let N be a set of n elements, m a positive integer number smaller

than n and d : N × N → R a distance function on the elements of N,

such that dii = 0 for all i ∈ N, dij ≥ 0 and dij = dji for all i, j ∈ N. The

literature denotes by Dispersion Problems (DPs) a family of problems

which require to extract from N a subset M of cardinality m, so as to

optimize a suitable function of the distances between the extracted

elements (Erkut, 1990; Prokopyev, Kong, & Martinez-Torres, 2009).

The natural mathematical programming formulations for these prob-

lems associate a binary variable xi to each element i ∈ N and set xi = 1

if i belongs to M, xi = 0 otherwise:

max z = fd(x) (1a)

s.t.
∑
i∈N

xi = m (1b)

xi ∈ {0, 1} i ∈ N (1c)

where notation fd (x)means that the objective is a composite function

of vector x through the distance function d, and specifically it depends

only on the distances dij between pairs of elements (i, j) such that

xi = xj = 1.
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A whole family of problems can be derived from (1) by specify-

ing in different ways the expression of fd(·). All of them share the

same set of feasible solutions, but the properties and behaviour of

their objective functions can be strongly different. In particular, the

classical application of DPs has been the maximization of some dis-

persion index used as a measure of operational efficiency. This may

refer to the location of facilities (Erkut & Neuman, 1989; Kuby, 1987),

but also to the protection of biological diversity, the formulation of

admission policies, the formation of committees, the composition of

medical crews (Adil & Ghosh, 2005; Aringhieri, 2009; Glover, Kuo,

& Dhir, 1998; Kuo, Glover, & Dhir, 1993; Weitz & Lakshminarayanan,

1998) and, more theoretically, the identification of densest subgraphs

(Brimberg, Mladenovic, Urosevic, & Ngai, 2009). For example, the max-

sum DP, more commonly known as Maximum Diversity Problem (MDP)

aims to maximize the sum of the pairwise distances between all se-

lected elements (Kuo et al., 1993):

fd(x) = 1

2

∑
i,j∈N

dijxixj (2)

whereas the max-min DP aims to maximize the distance between the

two closest elements (Erkut, 1990):

fd(x) = min
i,j∈N:xi=xj=1

dijxixj (3)

In contrast to the classical line of research, Erkut and Neuman

(1991) and Prokopyev et al. (2009) introduced alternative definitions
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of fd(·) to express equity requirements, referring in particular to the

idea of fairness among candidate sites for urban public facilities. This

alternative approach is focused on an intermediate aggregate disper-

sion measure

Di(x) =
∑
j∈N

dijxj i ∈ N (4)

that is the sum of the distances between each single element and the

selected ones, and can be equivalently expressed as
∑

j∈M dij. Both

papers investigate the optimization of the max-minsum DP, which

aims to guarantee that each selected element is as distant as possible

from the other ones, setting:

fd(x) = min
i∈N:xi=1

Di(x) (5)

which is the minimum aggregate dispersion for the selected elements,

and which should be maximized. Prokopyev et al. (2009) also consider

the min-diffsum DP, which aims to guarantee that each selected ele-

ment has approximately the same total distance from the other ones,

setting

fd(x) = max
i∈N:xi=1

Di(x)− min
j∈N:xj=1

Dj(x) (6)

that is the maximum difference between the aggregate dispersions of

the selected elements. Notice that function fd (·) should be minimized

here, instead of maximized.

This work proposes heuristic algorithms for the max-minsum DP

and the min-diffsum DP, inspired by the state-of-the-art methods for

the max-sum DP and max-min DP.

Our first aim is to investigate whether the main ideas which guar-

antee a strong performance on efficiency-concerned DPs maintain

their effectiveness when applied to equity-concerned DPs. On one

hand, the identical structure of the feasible set for these two sub-

families of DPs suggests that it might be the case. On the other hand,

the completely different structure of the objective function, and con-

sequently of the so called landscape of the problem (Stadler, 1992),

poses reasonable doubts on this assumption. See also Resende, Martì,

Gallego, and Duarte (2010) for a discussion on the weak correlation

between the optimal solutions of the max-sum DP and the max-min DP.

From this perspective, we investigate the impact of some construc-

tive heuristics based on the idea of determining a more favourable

initial solution and compare them with the use of a random restart

procedure as in Aringhieri and Cordone (2011).

The second aim of this work is to provide best known results for

publicly available benchmark instances of equity-concerned DPs, thus

stimulating further research on the topic, as done for the max-sum

DP in Martì, Gallego, Duarte, and Pardo (2011). Since the instances

considered in Prokopyev et al. (2009) are not publicly available and

their size (50–100 elements) is currently too small for a significant

algorithmic comparison, we adopted the benchmark instances of the

Optsicom web site (http://www.optsicom.es/mdp). These were origi-

nally proposed for the max-sum DP, but can be directly employed for

all DPs. Specifically, we consider instances up to 500 elements. For

some of them, we also provide optimal results, or at least bounds,

obtained with a general purpose Mixed Integer Linear Programming

(MILP) solver.

The paper is organized as follows. Section 2 surveys the relevant

literature. Section 3 presents the algorithms here proposed to solve

the max-minsum DP and the min-diffsum DP, discussing in detail the

basic ideas inspired by the literature on efficiency-concerned DPs.

Section 4 reports and discusses the computational results. Appendix A

(Tables A.1–A.6) reports the best known results on all the tested in-

stances.

2. A survey on dispersion problems

Most of the literature on DPs concerns the max-sum DP and the

max-min DP. Briefly summarizing, the exact methods for the max-sum

DP can solve instances up to 100–150 elements (Aringhieri, Bruglieri,

& Cordone, 2009; Erkut, 1990; Martì, Gallego, & Duarte, 2010; Pisinger,

2006), whereas larger instances require heuristic approaches. Most of

these approaches are local search metaheuristics based on the simple

exchange of elements in and out of the current solution. In particu-

lar, the hybrid metaheuristic proposed by Wu and Hao (2013) pro-

vides the best known results for a large set of benchmark instances,

whose size goes up to 5000 elements. Other approaches exhibit-

ing remarkable performances are Variable Neighbourhood Search

(Aringhieri & Cordone, 2011; Brimberg et al., 2009), Iterated Tabu

Search (Palubeckis, 2007), Learnable Tabu Search (Wang, Zhou, Cai, &

Yin, 2012), basic Tabu Search (Aringhieri, Cordone, & Melzani, 2008;

Duarte & Martì, 2007), Scatter Search (Aringhieri & Cordone, 2011;

Gallego, Duarte, Laguna, & Martì, 2009) and GRASP (Duarte & Martì,

2007; Silva, de Andrade, Ochi, Martins, & Plastino, 2007). According

to our experience on this problem, the key to impressively good per-

formances and fast execution times is the use of strong, though not

necessarily sophisticated, diversification mechanisms (Aringhieri &

Cordone, 2011).

The max-min DP, on the other hand, suffers from a very flat land-

scape of the objective function (several different solutions have ex-

actly the same value). This poses a severe challenge on local search

metaheuristics, as discussed in Resende et al. (2010), where differ-

ent heuristics are extensively compared, among which a GRASP with

evolutionary path relinking exhibits the best performance. To partly

overcome the issue of the flat landscape, this work minimizes also a

secondary objective function, that is the number of pairs (i, j) in the

solution such that dij is minimum. Della Croce , Grosso, and Locatelli

(2009) reformulate the max-min DP as a dichotomic search on a se-

quence of instances of the Maximum Clique Problem (MCP), which are

solved with the powerful Iterated Local Search (ILS) heuristic pro-

posed in Grosso, Locatelli, and Pullan (2008). This approach allows

to prove the optimality of the solution for several instances up to

n = 250 elements, provided that the clique subproblem is solved with

an exact algorithm. In the end, the Tabu Search algorithm described

in Porumbel, Hao, and Glover (2011) applies separate add and drop

operations to reduce the complexity of each iteration from quadratic

to linear, and it adopts an extremely simple tabu rule: the drop oper-

ation always removes the oldest selected element. In this way, each

element remains in the solution for exactly m iterations. The algo-

rithm also exploits the sum of all pairwise distances between the

elements of the solution as an auxiliary objective function to perturb

the flat landscape of the problem.

Switching to equity-concerned models, the max-minsum DP has

been introduced by Erkut and Neuman (1991) and the min-diffsum

DP by Prokopyev et al. (2009), who provide MILP formulations and

discuss the computational complexity of both problems, and of other

related ones. They also apply a general-purpose solver on instances

from 30 to 100 elements and a GRASP metaheuristic on the instances

with 50 and 100 elements. This algorithm generates a starting solu-

tion adding one element at a time, chosen randomly from a restricted

candidate list of random length, which includes the elements yield-

ing the best partial solutions. Then, the starting solution is improved

with a sort of first-improvement local search on a restricted neigh-

bourhood. This attempts a random exchange between one element

in the solution and one out of it: if the objective improves, the new

solution is accepted and the search restarts from it. If it is rejected

for a specified number of times, the improvement phase gives place

to a new constructive phase. The whole algorithm terminates after a

given number of constructive and improvement phases.

Some works on equity-concerned models (Prokopyev et al., 2009)

allow the distance function d to assume also negative values. Notice

that, due to the cardinality constraint, if all distances between two

distinct elements are increased by a uniform amount δ > 0, the value

of each feasible solution correspondingly increases by a fixed amount

depending on δ and on the cardinality m:
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