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a b s t r a c t

In this paper we present complexity results for flow shop problems with synchronous movement which are a

variant of a non-preemptive permutation flow shop. Jobs have to be moved from one machine to the next by an

unpaced synchronous transportation system, which implies that the processing is organized in synchronized

cycles. This means that in each cycle the current jobs start at the same time on the corresponding machines

and after processing have to wait until the last job is finished. Afterwards, all jobs are moved to the next

machine simultaneously.

Besides the general situation we also investigate special cases involving machine dominance which means

that the processing times of all jobs on a dominating machine are at least as large as the processing times

of all jobs on the other machines. Especially, we study flow shops with synchronous movement for a small

number of dominating machines (one or two) and different objective functions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A flow shop with synchronous movement is a variant of a non-

preemptive permutation flow shop where transfers of jobs from one

machine to the next take place at the same time. Processing of a job on

the next machine may only start after the current jobs on all machines

are finished, i.e. after the maximal processing time of the jobs that

are currently processed. If the processing time of a job on a certain

machine is smaller than this maximum, the corresponding machine is

idle until the job may be transferred to the next machine. In contrast,

in a classical flow shop the transfer of jobs is asynchronous: Jobs may

be transferred to the next machine as soon as their processing on the

current machine is completed and processing on the next machine

immediately starts as soon as this machine is available.

Complexity of production systems with synchronous movements

was first discussed by Karabati and Sayin (2003). In their work the

authors consider a cyclic production environment minimizing the

completion time of one production cycle and prove that the problem

is NP-hard for an arbitrary number of machines. Soylu, Kirca, and

Azizoğlu (2007) present a branch-and-bound approach to minimize

the makespan in flow shops with synchronous transfers. Additionally,

it is claimed that the three-machine flow shop problem with syn-

chronous movement is NP-hard, but the proof seems to be flawed.
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We will present a correct NP-hardness proof for the three-machine

case in this work. In Huang and Hung (2010) as well as Huang (2011),

rotating production units with synchronous movement and a load-

ing/unloading (L/U) station are considered. In this framework, a job

enters the production unit at the L/U station and is then processed on

all machines before returning to the L/U station where it is unloaded.

A practical application of a synchronous flow shop was studied in

Waldherr and Knust (2014). There, in the production process of shelf-

boards at a kitchen manufacturer circular production units with eight

machines incorporating synchronous movement are used.

In this work we study the complexity of flow shops with syn-

chronous movement which we will also call “synchronous flow shops”

for short. Motivated by practical applications (e.g. Waldherr and Knust

(2014)) and previous work concerning classical flow shop scheduling

problems, we also investigate special cases involving machine dom-

inance. A machine is called dominating if the processing times of all

jobs on this machine are at least as large as the processing times of all

jobs on the other machines. In other words, this implies that the dom-

inating machines dictate the pace of the flow shop with synchronous

movement. For example, in the practical application in Waldherr and

Knust (2014) among the eight machines two dominating ones ex-

ist. Classical flow shop problems with dominating machines are well

studied in literature. For example, efficiently solvable cases can be

found in Monma and Rinnooy Kan (1983), Ho and Gupta (1995), and

Xiang, Tang, and Cheng (2000). In Wang and Xia (2005) dominating

machines in no-wait flow shops are investigated.

The remainder of this paper is organized as follows. After giving a

formal description of the considered problems in Section 2, we study
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general synchronous flow shop problems in Section 3. Especially, we

consider different objective functions for the two-machine case and

show that the three-machine synchronous flow shop minimizing the

makespan is NP-hard. In Section 4 we consider synchronous flow

shop problems with dominating machines in general. Afterwards, we

present complexity results for the situations of one and two dominat-

ing machines in Sections 5 and 6, respectively. Finally, in Section 7 a

summary of all results and some concluding remarks can be found.

2. Problem formulation

In this section we describe the studied problems more formally

and introduce the used notations. We consider a permutation flow

shop with m machines M1, . . . , Mm and n jobs where job j consists of m

operations O1j → O2j → . . . → Omj. Operation Oij has to be processed

without preemption on machine Mi for pij time units. In a feasible

schedule each machine processes at most one operation at any time,

each job is processed on at most one machine at any time, and the

jobs are processed in the predefined order. Furthermore, the jobs are

processed in the same order on all machines.

The processing is organized in synchronized so-called cycles

(rounds) since jobs have to be moved from one machine to the next

by an unpaced synchronous transportation system. This means that

in a cycle all current jobs start at the same time on the corresponding

machines. Then all jobs are processed and have to wait until the last

one is finished. Afterwards, all jobs are moved to the next machine

simultaneously. The job processed on the last machine Mm leaves the

system, a new job (if available) is put on the first machine M1. As

a consequence, the processing time of a cycle is determined by the

maximum processing time of the operations contained in it. Further-

more, only permutation schedules are feasible, i.e. the jobs have to be

processed in the same order on all machines.

The time at which a job j has been processed on all machines

and leaves the system is called its completion time Cj. Depending

on the actual environment, for synchronous flow shops two possible

definitions of completion times Cj may be considered. In the first

version, a job can immediately be removed from the last machine

after it is completed. In the second version, a job can only be accessed

after the whole cycle has been completed, i.e. the job may have to

wait until all jobs on the other machines in the corresponding cycle

are finished. A flow shop of the first type can easily be transformed

into an equivalent flow shop of the second type by adding another

machine with processing times 0 for all jobs after the last machine.

Conversely, the reverse is not necessarily true. In general, a flow shop

of the second type cannot be transformed into an equivalent flow

shop of the first type. In this work we always consider the second

type.

The goal is to find a sequence (permutation) of the jobs such that a

given objective function (e.g. the makespan Cmax = max Cj or the max-

imum lateness Lmax involving due dates) is minimized. With each se-

quence a corresponding (left-shifted) schedule is associated in which

each operation starts as early as possible.

We consider a small example with three machines, five jobs and

the following processing times:

j 1 2 3 4 5

p1j 3 1 2 5 3
p2j 1 3 2 1 1
p3j 1 1 5 5 1

Fig. 1 shows two feasible synchronous flow shop schedules. The

vertical lines indicate the cycles and show when the jobs are trans-

ferred to the next machine. In the left part of the figure the schedule

corresponding to the job sequence (1, 2, 3, 4, 5) with makespan 23

is shown. Here, we can observe a long waiting period (idle time) on

machine M3 between processing jobs 2 and 3: Although job 3 has al-

ready finished processing on machine M2 and job 2 has already been
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Fig. 1. A feasible and an optimal schedule for a synchronous flow shop.

processed on machine M3, job 3 may not be transferred to machine

M3 because it has to wait until job 4 is finished on machine M1. In

the right part of the figure the schedule corresponding to the job se-

quence (3, 1, 4, 2, 5)with makespan 18 is shown. It is optimal for this

instance.

In general, a schedule consists of n + m − 1 cycles, which are di-

vided into a starting phase (m − 1 cycles, until jobs are present on each

machine), a standard phase (n − m + 1 cycles, as described above),

and a final phase (m − 1 cycles, where no more jobs are available

for M1).

Extending the α|β|γ scheduling classification scheme from

Graham, Lawler, Lenstra, and Rinnooy Kan (1979), in Huang (2011)

the notation “synmv” was added to the β-field in order to indicate

synchronous movements. Hence, the notation F|synmv|f refers to a

synchronous flow shop with objective function f . If the number of ma-

chines m is fixed (i.e. not part of the input), we will write Fm|synmv|f .

3. General synchronous flow shops

In this section we consider general synchronous flow shops. Since

a flow shop with m = 1 is equivalent to a classical single-machine

problem, it is not of special interest. Thus, in the following we will

consider synchronous flow shops with m = 2 or m = 3 machines and

show that the results may be generalized for m > 3 machines.

As already observed in Soylu et al. (2007), the two-machine syn-

chronous flow shop problem is closely related to the correspond-

ing two-machine flow shop problem with no-wait or blocking con-

straints. It is easy to see that a feasible schedule for a synchronous

flow shop also satisfies the blocking constraint and vice versa. Fur-

thermore, a feasible no-wait schedule can be obtained from such a

schedule by shifting the operations on the first machine to the right

in each cycle (this does not change the completion times of the op-

erations on the second machine). Hence, the makespan is equal in all

three situations and thus an optimal schedule for either of the prob-

lems F2|no-wait|Cmax, F2|blocking|Cmax or F2|synmv|Cmax defines an

optimal solution for the other two problems as well. All problems are

equivalent to a special case of the traveling salesman problem, which

can be solved in O(n log n) by the algorithm of Gilmore and Gomory

(1964).

On the other hand, because we defined the completion time of a

job within the synchronous flow shop as the completion time of the

corresponding cycle, the individual completion times of the jobs in a

synchronous flow shop are not the same compared to the no-wait or

the blocking situation. Hence, for other objective functions, in general

we get different objective values for the three variants. Röck (1984)

proved that F2|no-wait|∑ Cj and F2|no-wait|Lmax are strongly NP-

hard. Within his proof schedules without idle times on machines M1

and M2 are generated. If no idle times exist on the second machine,

the completion times of the jobs are the same for the no-wait and

the synchronous case. Thus, the results of Röck (1984) can be used to

show that F2|synmv|∑ Cj and F2|synmv|Lmax are strongly NP-hard

as well.

Note that for m ≥ 3 the described equivalence between the three

concepts no-wait, blocking, and synchronous movement is no longer

valid. For F3|no-wait|Cmax and F3|blocking|Cmax it is known that these

problems are strongly NP-hard. Soylu et al. (2007) claimed that also
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