
European Journal of Operational Research 242 (2015) 45–50

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Scheduling to minimize the maximum total completion time

per machine ✩

Long Wan a, Zhihao Ding b, Yunpeng Li b, Qianqian Chen b, Zhiyi Tan c,∗

a School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, PR China
b Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China
c Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, PR China

a r t i c l e i n f o

Article history:

Received 17 July 2013

Accepted 28 September 2014

Available online 7 October 2014

Keywords:

Scheduling

Parallel machine

Worst-case ratio

a b s t r a c t

In this paper, we study the problem of minimizing the maximum total completion time per machine on m

parallel and identical machines. We prove that the problem is strongly NP-hard if m is a part of the input.

When m is a given number, a pseudo-polynomial time dynamic programming is proposed. We also show

that the worst-case ratio of SPT is at most 2.608 and at least 2.5366 when m is sufficiently large. We further

present another algorithm which has a worst-case ratio of 2.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Minimizing the total (weighted) completion time is one of the

most commonly studied criteria in scheduling theory (Smith, 1956;

Kawaguchi, & Kyan, 1986). It is well known that the problem of min-

imizing the total completion time on parallel and identical machines

can be solved optimally by the Shortest Processing Time first (SPT for

short) algorithm (Conway, Maxwell, & Miller, 1967). Here SPT first

sorts all jobs in the order of nondecreasing processing times, then as-

signs the first unprocessed job in the sequence to the machine which

can complete it as early as possible.

However, in the schedule produced by SPT , the total completion

time of the jobs assigned to each machine may vary quite widely. To

keep the total completion time per machine as equal as possible, it

is convenient to consider the objective of minimizing the maximum

total completion time per machine. Suppose a manager of a com-

pany wants to assign some late orders to several parallel subsidiaries.

Since the orders are delayed, a penalty should be paid for each order,

which is proportional to its completion time. The manager wants to

be fair such that the total penalty that each subsidiary needs to be

paid is as equal as possible. The situation can be viewed as a schedul-

ing problem, in which orders are modeled as jobs and subsidiaries

are modeled as machines. Taking the above objective into considera-

✩ This work was supported by the National Natural Science Foundation of

China (10971191, 11271324) and Zhejiang Provincial Natural Science Foundation of

China (LR12A01001).
∗ Corresponding author. Tel.: +86 0571 87953867.

E-mail address: tanzy@zju.edu.cn (Z. Tan).

tion, the manager may be provided with constructive assistance and

receive much less complaints from subsidiaries.

The problem can be stated formally as follows. We are given

a sequence of n independent jobs J1, J2, . . . , Jn, which need to be

non-preemptively processed on m parallel and identical machines

M1, M2, . . . , Mm. The size (processing time) of Jj is pj, j = 1, . . . , n.

Without loss of generality, we assume p1 ≤ p2 ≤ · · · ≤ pn. Given a

schedule σ A, let CA
j

be the completion time of Jj in σ A, j = 1, . . . , n.

The total completion time of the jobs scheduled on Mi is denoted TCA
i

,

i = 1, . . . , m. Then TCA = maxi=1,... ,m TCA
i

is the objective value of σ A.

By extending the three-field notation, the problem can be denoted as

Pm||(∑ Cj)max, while the corresponding problem with the objective

of minimizing the total completion time is denoted by Pm||∑ Cj as

usual. The problem of finding such a schedule among optimal sched-

ules of Pm||∑ Cj that the maximum total completion time per ma-

chine is minimized is denoted Pm||Lex(
∑

Cj, (
∑

Cj)max). We will use

σ ∗ and σ ∗∗ to denote the optimal schedules of Pm||(∑ Cj)max and

Pm||Lex(
∑

Cj, (
∑

Cj)max), respectively.

The problem Pm||(∑ Cj)max was first proposed by Angel, Bampis,

and Pascual (2008). They proved that to find schedule σ ∗ or σ ∗∗

is NP-hard. They also proved that the worst-case ratio of SPT for

Pm||(∑ Cj)max lies in the interval [2 − 2
m2+m

, 3 − 3
m + 1

m2]. In this pa-

per, we show that the problem is strongly NP-hard if m is a part of

the input. When m is a given number, a pseudo-polynomial time dy-

namic programming algorithm is proposed, which will directly lead

to a Fully Polynomial Time Approximation Scheme (FPTAS). We also

show that the worst-case ratio of SPT is at most 2.608 and at least

2.5366 when m is sufficiently large. The lower and upper bounds of

the worst-case ratio of SPT when m is a fixed number are also im-

proved. We further present another algorithm Reverse SPT (RSPT for

http://dx.doi.org/10.1016/j.ejor.2014.09.063

0377-2217/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2014.09.063
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.09.063&domain=pdf
http://data.elsevier.com/vocabulary/SciValFunders/501100001809
mailto:tanzy@zju.edu.cn
http://dx.doi.org/10.1016/j.ejor.2014.09.063

46 L. Wan et al. / European Journal of Operational Research 242 (2015) 45–50

short) which is also optimal for Pm||∑ Cj and has a worst-case ratio

of 2 for Pm||(∑ Cj)max.

Comparing with the FPTAS, the advantage of SPT and RSPT is

that both are optimal algorithms for Pm||∑ Cj. Thus corresponding

results have some similarity with hierarchical optimization, an ap-

proach widely used for multicriteria scheduling (Hoogeveen, 2005;

T’kindt, & Billaut, 2006; Perez-Gonzalez, & Framinan, 2014). Inspired

by our work, Wan, Ma, and Yuan (2014) considered the problem of

Pm||Lex(
∑

Cj, (
∑

Cj)max), and proved that the worst-case ratios of

SPT and RSPT are at most 11
6 and 3

2 , respectively. The difference on

the worst-case ratios of the same algorithm indicates that σ ∗ and σ ∗∗

usually are not identical.

There are fruitful results in the field of multicriteria scheduling

problems on parallel machines. Most researches are concerned with

two objectives of minimizing the makespan and minimizing the total

completion time (Leung, & Young, 1989; Lin, Fowler, & Pfund, 2013;

Lee, Leung, Jia, Li, & Pinedo, 2014), which are regarded to be egalitar-

ian and utilitarian objectives, respectively (Myerson, 1981). In fact,

the objective of minimizing the maximum total completion time per

machine shares the above two characteristic features, which makes

our results new and interesting. Another line of research about mul-

ticriteria scheduling is the so-called multi-agent scheduling (Baker &

Smith, 2003; Agnetis, Mirchandani, Pacciarelli, & Pacifici, 2004; Leung,

Pinedo, & Wan, 2010; Mor, & Mosheiov, 2011; Nong, Cheng, & Ng,

2011). It arises in situations where multiple agents (customers), each

having a different objective, compete for a common processing re-

source. However, for our problem, jobs belong to the same agent and

contribute to the single objective.

The rest of the paper is organized as follows. In Section 2, we

present complexity result and dynamic programming. The analyses

of SPT and RSPT are given in Sections 3 and 4, respectively. Finally

some conclusions are made in Section 5.

2. Complexity, dynamic programming and FPTAS

In Angel et al. (2008), it is proved that finding a schedule among

all schedules or among optimal schedules of Pm||∑ Cj such that the

maximum total completion time per machine is minimized is NP-

hard. However, if m is a part of the input, to find a schedule minimizing

the maximum total completion time per machine is strongly NP-hard.

The following helpful lemma can be proved by a job interchange

argument.

Lemma 2.1. There always exists an optimal schedule of Pm||(∑ Cj)max

in which all machines process the jobs in non-decreasing order of the size

without idle time.

Theorem 2.1. P||(∑ Cj)max is strongly NP-hard.

Proof. The theorem will be proved by reduction from the numerical

three-dimensional matching problem, which is known to be strongly

NP-complete (Garey, and Johnson (1978)).

Numerical three-dimensional matching problem: Given three

multisets of integers U = {u1, . . . , um}, V = {v1, . . . , vm}, W =
{w1, . . . , wm} and an integer B such that

∑m
i=1(ui + vi + wi) = mB,

do there exist two permutations φ and ϕ of {1, . . . , m} such that

ui + vφ(i) + wϕ(i) = B for i = 1, . . . , m?

Let IM be an instance of numerical three-dimensional matching.

Construct an instance with m machines and 3m jobs. Each job belongs

to one of three types, U-job, V-job, or W-job. Corresponding to each

element ui of U, there is a U-job JUi
with size

ui
3 . Corresponding to each

element vi of V , there is a V-job JVi
with size

vi
2 + B. Corresponding

to each element wi of W , there is a W-job JWi
with size wi + 2B. We

will show that IM has “yes” answer if and only if there is a feasible

schedule such that the maximum total completion time per machine

is no more than 5B.

If IM has “yes” answer, then there exist two permutations φ and

ϕ of {1, . . . , m} such that ui + vφ(i) + wϕ(i) = B for i = 1, . . . , m. Let

JUi
, JVφ(i)

, JWϕ(i)
be the three jobs successively scheduled on Mi, i =

1, . . . , m. The total completion time of Mi, i = 1, . . . , m, is

3
ui

3
+ 2

(
vφ(i)

2
+ B

)
+ (wϕ(i) + 2B) = 5B.

On the other hand, suppose there exist feasible schedules such that

the maximum total completion time per machine is no more than 5B.

By Lemma 2.1, we can focus on the one, denoted by σ Y , that jobs

are sequenced in non-decreasing order of the sizes on each machine.

Clearly, TCY
i

≤ 5B, i = 1, . . . , m. We show the structure of σ Y step by

step. Firstly, there is exactly one W-job on each machine. Otherwise,

there exists machine Mi which processes at least two W-jobs. Thus

TCY
i

≥ 2 · 2B + 2B = 6B > 5B, a contradiction. Let the W-job scheduled

on Mi be JWϕ(i)
, i = 1, . . . , m, thus ϕ is a permutation of {1, . . . , m}.

Secondly, there is at most one V-job on each machine. Otherwise,

there exists machine Mi which processes at least two V-jobs. Thus

TCY
i

≥ 3 · B + 2 · B + 2B = 7B > 5B, also a contradiction. Let the V-job

scheduled on Mi be JVφ(i)
, i = 1, . . . , m, thus φ is also a permutation of

{1, . . . , m}. Finally, let U i be the set of U-jobs which are scheduled on

Mi, i = 1, . . . , m. We claim that |U i| = 1 for any i. In fact, if U i = {JUi
},

then

TCY
i = 3

ui

3
+ 2

(
vφ(i)

2
+ B

)
+ (wϕ(i) + 2B)

= ui + vφ(i) + wϕ(i) + 4B.

If |U i| ≥ 2, then

TCY
i > 3

∑
JUi

∈U i

ui

3
+ 2

(
vφ(i)

2
+ B

)
+ (wϕ(i) + 2B)

=
∑

JUi
∈U i

ui + vφ(i) + wϕ(i) + 4B.

Hence, if there exists i, such that |U i| ≥ 2, then

m∑
i=1

TCY
i >

m∑
i=1

⎛
⎝ ∑

JUi
∈U i

ui + vφ(i) + wϕ(i) + 4B

⎞
⎠

= 4mB +
m∑

i=1

(ui + vi + wi) = 5mB ≥ mTCY ,

which is a contradiction. Therefore, |U i| = 1 for any i and we as-

sume that U i = {JUi
}. Moreover, since

∑m
i=1 TCY

i
= 5mB ≥ mTCY =

m maxi=1,... ,m TCY
i

, TCY
i

= 5B for any i. Thus, we find two permuta-

tions φ and ϕ of {1, . . . , m} such that ui + vφ(i) + wϕ(i) = B for any

i = 1, . . . , m, which implies that IM has “yes” answer.

The result of Theorem 2.1 excludes the possibility that the

P||(∑ Cj)max admits a FPTAS. However, if m is a fixed number, we

can develop a pseudo-polynomial time dynamic programming algo-

rithm DP. In other words, the problem is NP-hard in the ordinary

sense.

Denote by [c1, . . . , cm, t1, . . . , tm] the state vector of a partial

schedule without idle time, where ci and ti are the current com-

pletion time and current total completion time of Mi, respectively,

i = 1, . . . , m. Let the initial state space be F0 = {[0, . . . , 0, 0, . . . , 0]}.

Let Fj be the set of state vectors for schedules of the first j jobs,

j = 1, 2, . . . , n. Then the state space Fj can be recursively generated

from Fj−1 as follows.

For any schedule of the first j − 1 jobs, which corresponds to a

state vector [c1, . . . , cm, t1, . . . , tm] of Fj−1, Jj can be assigned to any

one of the m machines. By Lemma 2.1, we can assume that Jj is the

current last job on the machine where it is assigned. Specifically, if

Download English Version:

https://daneshyari.com/en/article/476578

Download Persian Version:

https://daneshyari.com/article/476578

Daneshyari.com

https://daneshyari.com/en/article/476578
https://daneshyari.com/article/476578
https://daneshyari.com

