
European Journal of Operational Research 242 (2015) 51–62

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Incremental network design with maximum flows

Thomas Kalinowski a,∗, Dmytro Matsypura b, Martin W. P. Savelsbergh c

a The University of Newcastle, School of Mathematical & Physical Sciences, University Drive, Callaghan NSW 2308, Australia
b The University of Sydney, Business School, Merewether Building, NSW 2006, Australia
c Georgia Institute of Technology, H. Milton Stewart School of Industrial & Systems Engineering, 755 Ferst Drive, NW Atlanta, GA 30332-0205, USA

a r t i c l e i n f o

Article history:

Received 24 December 2013

Accepted 1 October 2014

Available online 13 October 2014

Keywords:

Network design

Approximation algorithms

Scheduling

a b s t r a c t

We study an incremental network design problem, where in each time period of the planning horizon an arc

can be added to the network and a maximum flow problem is solved, and where the objective is to maximize

the cumulative flow over the entire planning horizon. After presenting two mixed integer programming (MIP)

formulations for this NP-complete problem, we describe several heuristics and prove performance bounds

for some special cases. In a series of computational experiments, we compare the performance of the MIP

formulations as well as the heuristics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the planning process for many network infrastructures, when

the network is constructed over a significant period of time, the prop-

erties of the intermediate partial networks have to be taken into

account. Incremental network design, introduced in Baxter, Elgindy,

Ernst, Kalinowski, and Savelsbergh (2014), represents a class of opti-

mization problems capturing that feature and combining two types

of decisions: which arcs should be added to a given network in order

to achieve a certain goal, and when should these arcs be added?

Variants of this problem have been studied in diverse contexts,

for instance, the design of transportation networks (Kim, Kim, &

Song, 2008; Ukkusuri & Patil, 2009), network infrastructure restora-

tion after disruptions due to natural disasters (Cavdaroglu, Hammel,

Mitchell, Sharkey, & Wallace, 2013; Lee, Mitchell, & Wallace, 2007,

2009), and the transformation of an electrical power grid into a smart

grid (Mahmood, Aamir, & Anis, 2008; Momoh, 2009). Our study is

motivated by infrastructure expansion questions arising in the coal

export supply chain in the Hunter Valley with coal terminals in the

Port of Newcastle (see Boland & Savelsbergh, 2011 for details).

A general class of mathematical optimization problems that cap-

tures essential features of the described decision problems, and in-

cludes the problem discussed in this paper as a special case, was in-

troduced in Nurre, Cavdaroglu, Mitchell, Sharkey, and Wallace (2012)

and Nurre and Sharkey (2014), where an integrated network design

and scheduling problem is specified by (1) a scheduling environment

that describes the available resources for adding arcs to the network,

∗ Corresponding author. Tel.: +61 2 4921 6558; fax: +61 2 4921 6898.

E-mail address: thomas.kalinowski@newcastle.edu.au (T. Kalinowski).

(2) a performance measure, which prescribes how a given network is

evaluated (for instance by the shortest s-t path or by the maximum

s-t flow in the network), and (3) by the optimization goal, which is

either to reach a certain level of performance as quickly as possible

or to optimize the cumulative performance over the entire planning

horizon.

We focus on the special case corresponding to incremental net-

work design as introduced in Baxter et al. (2014). Our scheduling en-

vironment is such that at most one arc can be added to the network

in each time period, and we optimize the cumulative performance,

i.e., the sum of the performance measures of the networks in all time

periods. Even in this simple setting, the problem has been shown to

be NP-complete for classical network optimization problems: for the

shortest s-t path problem in Baxter et al. (2014), and for the maximum

s-t flow problem in Nurre and Sharkey (2014). Interestingly, the incre-

mental variant of the minimum spanning tree problem can be solved

efficiently by a greedy algorithm (Engel, Kalinowski, & Savelsbergh,

2013), while it becomes NP-complete in the more general setup of

Nurre and Sharkey (2014). The performance measure considered in

this paper is the value of a maximum s-t flow.

In Section 2, we introduce notation, state the problem precisely,

and present two MIP formulations. In Section 3, we describe three

heuristics, the first one seeks to increment the flow as quickly as

possible, the second seeks to reach a maximum flow as quickly as

possible, and the third one is a hybrid of the first two. In Section 4, we

prove performance guarantees for the first two heuristics in special

cases: for unit capacity networks they provide a 2-approximation al-

gorithm and a 3/2-approximation algorithm, respectively, and these

bounds can be strengthened when the network has a special structure.

Section 5 discusses the results of a set of computational experiments

using randomly generated instances. After describing the instance

http://dx.doi.org/10.1016/j.ejor.2014.10.003

0377-2217/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2014.10.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.10.003&domain=pdf
mailto:thomas.kalinowski@newcastle.edu.au
http://dx.doi.org/10.1016/j.ejor.2014.10.003


52 T. Kalinowski et al. / European Journal of Operational Research 242 (2015) 51–62

generation, we compare the performance of the two MIP formula-

tions, and evaluate and compare the heuristics on hard instances. We

end, in Section 6, with some final remarks.

2. Problem formulation

We are given a network D = (N, A) with node set N and arc set

A = Ae ∪ Ap, where Ae contains existing arcs and Ap contains potential

arcs, as well as a source s ∈ N and sink t ∈ N. For each arc, we are given

an integer capacity ua > 0, and for every node v ∈ N, we denote with

δin(v) and δout(v) the set of arcs entering v and the set of arcs leaving

v, respectively. Let T > |Ap| be the length of the planning horizon.

In every period, we have the option to expand the useable network,

which initially consists of only the existing arcs, by “building” a single

potential arc a ∈ Ap, which will be available for use from the following

time period on. In every period, the value of a maximum s-t flow is

recorded (using only useable arcs, i.e., existing arcs and potential arcs

that have been built in previous periods). The objective is to maximize

the total flow over the planning horizon. Note that the length of the

planning horizon ensures that every potential arc can be built. We

refer to a maximum s-t flow using only existing arcs as an initial

maximum flow, and to a maximum flow for the complete network as

an ultimate maximum flow. This problem is strongly NP-hard (Nurre

and Sharkey, 2014) even when restricted to instances where every

existing arc has capacity 1 and every potential arc has capacity 3. (A

simple proof of this result can be found in Appendix A.)

The problem can be formulated as a mixed integer program. For

every a ∈ A and k ∈ {1, . . . , T}, we have a flow variable xak � 0, and for

every a ∈ Ap and k ∈ {1, . . . , T}, we have a binary variable yak which

indicates if arc a is built before period k (yak = 1) or not (yak = 0). The

incremental maximum flow problem is then

max

T∑
k=1

⎛
⎝ ∑

a∈δout(s)

xak −
∑

a∈δin(s)

xak

⎞
⎠

subject to∑
a∈δout(v)

xak −
∑

a∈δin(v)

xak = 0 for v ∈ N \ {s, t}, k ∈ {1, . . . , T},

xak � ua for a ∈ Ae, k ∈ {1, . . . , T},
xak � uayak for a ∈ Ap, k ∈ {1, . . . , T},
yak � ya,k−1 for a ∈ Ap, k ∈ {2, . . . , T},

ya1 = 0 for a ∈ Ap,∑
a∈Ap

(yak − ya,k−1)� 1 for k ∈ {2, . . . , T − 1},

xak � 0 for a ∈ A, k ∈ {1, . . . , T},
yak ∈ {0, 1} for a ∈ Ap, k ∈ {1, . . . , T}.

We denote this formulation by IMFP1.

A potential weakness of IMFP1 is that it may suffer from symmetry.

If multiple arcs need to be build to increase the maximum s-t flow,

then the order in which these arcs are build does not matter, which

introduces alternative, symmetrical solutions. Next, we present an

alternative MIP formulation which avoids this difficulty. Let f and F

denote the initial and the ultimate maximum flow value, respectively,

and let r = F − f . We introduce binary variables yak for a ∈ Ap and

k = 1, 2, . . . , r with the interpretation

yak=
{
1 if arc a is build while the max flow value is less than f+k,

0 otherwise.

The number of time periods with maximum flow value f is
∑

a∈Ap
ya1,

and for k = 1, . . . , r − 1, the number of time periods with maximum

flow value f + k is
∑

a∈Ap
(ya,k+1 − yak). Consequently, the total flow is

f
∑
a∈Ap

ya1 +
r−1∑
k=1

(f + k)
∑
a∈Ap

(ya,k+1 − yak)+ F

⎛
⎝T −

∑
a∈Ap

yar

⎞
⎠

= TF +
∑
a∈Ap

r∑
k=1

yak [(f + k − 1)− (f + k)] = TF −
∑
a∈Ap

r∑
k=1

yak.

Hence the incremental maximum flow problem can also be formu-

lated as follows

min
∑
a∈Ap

r∑
k=1

yak

subject to
∑

a∈δout(v)

xak −
∑

a∈δin(v)

xak

=
⎧⎨
⎩

0 for v �∈ {s, t}
f + k for v = s
−f − k for v = t

for v ∈ N, k ∈ {1, . . . , r},

xak � ua for a ∈ Ae, k ∈ {1, . . . , r},
xak � uayak for a ∈ Ap, k ∈ {1, . . . , r},
yak � ya,k+1 for a ∈ Ap, k ∈ {1, . . . , r − 1},

xak � 0 for a ∈ A, k ∈ {1, . . . , r},
yak ∈ {0, 1} for a ∈ Ap, k ∈ {1, . . . , r}.

We denote this formulation by IMFP2.

Observe that the size of IMFP1 strongly depends on the length of

the planning horizon, whereas the size of IMFP2 strongly depends on

the difference between the initial and ultimate maximum flow values.

3. Heuristics

In this section, we introduce two natural strategies for trying to

obtain high quality solutions: (1) getting a flow increment as quickly

as possible, and (2) reaching a maximum possible flow as quickly as

possible, as well as a hybrid strategy.

3.1. Quickest flow increment

A natural greedy strategy is to build the arcs such that a flow

increment is always reached as quickly as possible. Suppose we have

already built the arcs in B ⊆ Ap to reach a maximum flow value f + k. A

smallest set of potential arcs to be built, in addition to B, to reach a flow

of value at least f + k + 1 can be determined by solving a fixed charge

network flow problem: find a flow of value f + k + 1 where arcs in

Ae ∪ B have zero cost, and arcs in Ap \ B incur a cost of 1 if they carry

a nonzero flow. More formally, in order to determine the smallest

number of potential arcs that have to be built to increase the flow from

f + k to at least f + k + 1, we solve the problem MinArcs(B, k + 1):

min z =
∑

a∈Ap\B

ya

subject to
∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa

=
⎧⎨
⎩

0 for v �∈ {s, t}
f + k + 1 for v = s
−f − k − 1 for v = t

for v ∈ N,

xa � ua for a ∈ Ae ∪ B,

xa � uaya for a ∈ Ap \ B,

xa � 0 for a ∈ A,

ya ∈ {0, 1} for a ∈ Ap \ B.



Download English Version:

https://daneshyari.com/en/article/476579

Download Persian Version:

https://daneshyari.com/article/476579

Daneshyari.com

https://daneshyari.com/en/article/476579
https://daneshyari.com/article/476579
https://daneshyari.com

