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a b s t r a c t

Under fairly general assumptions requiring neither a differentiable frontier nor a constant-returns-to-scale

technology, this paper introduces a new definition of an optimal scale size based on the minimization of

unit costs. The corresponding measure, average-cost efficiency, combines scale and allocative efficiency, and

generalizes the measurement of scale economies in efficiency analysis while providing a performance criterion

which is stricter than both cost efficiency and scale efficiency measurement. The average-cost efficiency is

not reliant upon the uniformity of the firms’ input-price vector, and we supply procedures to compute it in

both convex and non-convex production technologies. Empirical illustration of the theoretical results is given

with reference to large sets of production units.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A long-established tradition deals with the issue of the optimal

scale of production units without assigning a role to input prices.

Since the pioneering contribution of Frisch (1965), the optimal scale

size has been conceived of as the “technically optimal scale” maximiz-

ing average physical productivity along the production function, i.e.

the increase in a single output relative to a proportional increase in all

inputs. Baumol, Panzar, and Willig (1982) attempted to extend this

analysis by including costs and a multiple-output setting, but their

ray-average-cost function nevertheless did not account for a change

in input proportions as it was only concerned with radial expansions

of the given input and output mixes. In this tradition, the optimality

of a scale size – that is to say the evaluation of the scale efficiency of a

production unit – depends exclusively upon ray average productivity

with no role being played by the evaluation of the allocative efficiency

of its input mix. By formally developing the concept of most produc-

tive scale size (MPSS) for the case of multiple inputs and multiple

outputs, Banker’s (1984) seminal contribution confirmed this view

(see also Färe, Grosskopf, & Lovell, 1985). However, this concept of

optimality may become unsatisfactory when one reflects that Farrell

(1957) denoted cost efficiency – the ability to minimize total cost

borne for a given level of output – as overall efficiency precisely be-

cause of its capacity to include both the technical and the allocative

aspects. Farrell, along with Koopmans (1951) and others, is one of the
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pioneers of that modern analysis of production which accounts for

productive technologies possessing both feasible efficient and ineffi-

cient points. The first attempt to integrate scale and cost efficiency

into a single measure from this perspective, where applied analysis

has extensively relied on non-parametric methods employing linear

and integer programming (see, e.g., Banker, Charnes, & Cooper, 1984;

Charnes, Cooper, & Rhodes, 1978; Deprins, Simar, & Tulkens, 1984),

was made by Färe and Grosskopf (1985). In a data envelopment anal-

ysis (DEA) framework, characterized by a convex technology, they

introduced the cost measure of scale efficiency of a decision making

unit (DMU) as the ratio of its constant returns to scale (CRS) cost-

efficiency to that of its variable returns to scale (VRS). Sueyoshi (1997,

1999) extended this approach to the measurement of the degree of

scale economies.1 No application of these measures to a non-convex

production technology, such that of the free disposal hull (FDH), has

yet been found: as an example, De Witte and Marques’ (2010) scale

measure does not take account of input prices and is therefore not

concerned with allocative efficiency.

The kind of integration proposed by Färe and Grosskpof (1985)

and Sueyoshi (1999) has, however, proved to be less than effective

in prompting the inclusion of allocative efficiency in the definition of

an optimal scale size. As a matter of fact, recent contributions dealing

with the issue still base their definitions exclusively upon the max-

imal ray average productivity typical of the MPSS (see, e.g., Førsund

& Hjalmarsson, 2004; Podinovski, 2004). In our opinion, one reason

1 The ratio of marginal cost to average cost. In the paper, we will generally speak of

‘scale economies’ when monetary costs are being considered. Reference to productivity

in physical terms (input-output) will be denoted by the use of ‘returns to scale’.
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List of abbreviations

ACE average-cost efficiency

CRS constant returns to scale

DEA data envelopment analysis

DMU decision making unit

FDH free disposal hull

MPSS most productive scale size

OE overall efficiency/cost efficiency

OSS optimal scale size

TSRE technical and scale radial efficiency

VRS variable returns to scale

for this outcome might lie in the fact that Färe and Grosskopf’s (1985)

methodology does not envision a separation between scale and alloca-

tive efficiencies. As a consequence, their framework is unfit: a) to as-

certain the logical relationship existing between primal (production-

based) and dual (cost-based) optimal scale sizes2; b) to establish a

clear-cut algebraic relationship between production-based and cost-

based scale efficiencies.

Our analysis aims at offering a solution to these research issues –

including the introduction of the cost measure of scale efficiency in

FDH technologies – under assumptions more general than those fea-

tured in the methodology of Färe and Grosskopf (1985) and Sueyoshi

(1999). In fact, only free disposal and VRS are required, thereby re-

laxing the assumptions of convexity, CRS and differentiability of the

production frontier. The purpose is that of integrating the research

work initiated by Banker (1984) – characterized by VRS, MPSS and a

simple method for the determination of returns to scale – with Färe

and Grosskopf’s (1985) cost measure of scale efficiency.

To pursue this objective, we have introduced a new definition of

optimal scale size (OSS) as the scale which minimizes the ray aver-

age cost, taking into account the allocative efficiency of the input

mix. In particular, we propose an efficiency measure based upon

the ratio between the ray average cost of a DMU’s output vector –

evaluated at its OSS – and its total cost. The measure is called

average-cost efficiency because it can be interpreted as the poten-

tial reduction in unit cost that a DMU could achieve if it adopted

the scale of production and the input mix of its OSS. This efficiency

criterion is shown to be more restrictive than both VRS traditional

measures of cost efficiency and scale efficiency based on ray average

productivity.

The outline of the paper is as follows. Under the free disposal

assumption, Section 2 introduces the definitions of average-cost effi-

ciency (ACE) and of OSS. Without having recourse to the usual regu-

larity conditions, Section 3 characterizes an OSS and its relationship

with an MPSS by means of the decomposition of the ACE measure

into the sum of a scale and an allocative component. In general, an

OSS need not coincide with an MPSS, precisely because of the po-

tential allocative inefficiency of the latter. Section 4 is dedicated to

illustrating the geometric and economic significance of our measure,

and to its computation in convex and non-convex technologies, the

last sub-section clarifying the role of our assumptions on input prices.

Section 5 discusses the relationship of our analysis with the literature

on scale and cost-scale efficiency, while pointing out the advantages

that ACE measure achieves over the existing approaches. Detailed

empirical applications, regarding the convex and non-convex case,

are presented in Section 6, while Section 7 offers some concluding

remarks on the features of our proposed performance-criterion and

the potential for application in various economic sectors.

2 We use primal and dual with the same meaning assigned them by Färe and

Grosskopf (1985); see ibid., p. 595. The same use of these words is made by Sueyoshi

(1999) and Tone and Sahoo (2006).

2. Definition of average-cost efficiency and of an optimal

scale size

The production technology upon which the analysis is based sat-

isfies only the free disposability assumption, as it is the FDH of the

observed production possibilities. Free disposal means that, given

an observed input–output vector which we assume to belong to the

technology, we postulate as a feasible point of the same technol-

ogy any other vector which: a) has the same outputs, and inputs

which are no smaller, b) has the same inputs, and outputs which

are no larger. In other words, excess inputs and excess outputs can

be disposed of at no cost. We adopt the original FDH model (e.g.

Tulkens, 1993) in so far as it makes no specific assumption on the

returns-to-scale regime, which is therefore VRS. Introducing some no-

tation, we have n DMUs, with each DMU j (j = 1, . . . , n)using m inputs,

xij(i = 1, . . . , m), to produce s outputs, yrj(r = 1, . . . , s). We assume that

the observed input and output vectors of a generic DMU are, respec-

tively, xj = (x1j, . . . , xmj)
′ ≥ 0 and yj = (y1j, . . . , ysj)

′ ≥ 0, where the

prime indicates the transposition operation.3 If we denote the m × n

matrix of inputs as X = [x1, . . . , xn] and the s × n matrix of outputs as

Y = [y1, . . . , yn], then the production possibility set is expressed as

T =
{
(x, y)|Xλ ≤ x, Yλ ≥ y,

n∑
j=1

λj = 1, λj ∈ {0, 1}; j ∈ J

}
(1)

where λ is the n × 1 vector with components equal to λj, and

J = {1, . . . , n}.

Being dependent exclusively upon the strong disposability as-

sumption, the conclusions we reach carry over to a convex VRS pro-

duction possibility set, i.e. a set which is obtained by simply changing

the constraint on λj in (1), and which is defined as

TDEA =
{
(x, y)|Xλ ≤ x, Yλ ≥ y,

n∑
j=1

λj = 1, λj ≥ 0; j ∈ J

}
(2)

For future reference, we note that the CRS versions of the above tech-

nologies, which we denote respectively as TCRS and TDEA
CRS , are obtained

from (1) and (2) by substituting λ with z, a vector whose j-th element

is zj = wλj – where w > 0 is an arbitrary scaling factor.

As far as costs are concerned, we posit that each DMU faces the

same vector of input prices, p = (p1, . . . , pm) > 0, pxj thus being the

actual total cost that DMU j bears for producing its output vector, yj.

Uniformity of input prices across the different DMUs is being assumed

only for notational convenience, while most of our results will in fact

stand even when DMUs face varying input-price vectors (see, below,

Section 4.3).

In the literature on efficiency analysis, we have not found an ef-

ficiency concept involving the ratio of the average cost of a DMU’s

output to that of a reference unit. In fact, as previously stated, the

measures of both Färe and Grosskopf (1985) and Sueyoshi (1997),

while combining cost and scale efficiency, refer only to the total cost

borne by a DMU for producing its output vector. A ratio relating to

unit costs can however be devised in connection with the concept of

ray average cost. Hence, we will consider the ratio between the ray

average cost evaluated at a reference unit and that evaluated at the

DMU’s current scale size (i.e. total cost).

Following Baumol’s basic definition (see Baumol, 1977, p. 811;

Baumol et al., 1982, pp. 48–49), the ray average cost of the generic

DMU j is given as

RAC(yj) = C(tyj)

t
(3)

3 The vector-inequality sign means that each element of the left vector is weakly

greater than the corresponding element of the right vector, with at least one component

being strictly greater.
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