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a b s t r a c t

We consider a discrete time version of the popular optimal dividend payout problem in risk theory. The novel

aspect of our approach is that we allow for a risk averse insurer, i.e., instead of maximising the expected

discounted dividends until ruin we maximise the expected utility of discounted dividends until ruin. This task

has been proposed as an open problem in Gerber and Shiu (2004). The model in a continuous-time Brownian

motion setting with the exponential utility function has been analysed in Grandits et al. (2007). Nevertheless,

a complete solution has not been provided. In this work, instead we solve the problem in discrete time setup

for the exponential and the power utility functions and give the structure of optimal history-dependent

dividend policies. We make use of certain ideas studied earlier in Bäuerle and Rieder (2011), where Markov

decision processes with general utility functions were treated. Our analysis, however, includes new aspects,

since the reward functions in this case are not bounded.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dividend payout problem in risk theory has been introduced by

de Finetti (1957) and has since then been investigated under various

extensions during the decades up to now; see, for instance, Grandits,

Hubalek, Schachermayer, and Žigo (2007) or Yao, Yang, and Wang

(2011). The task is to find in a given model for the free surplus process

of an insurance company, a dividend payout strategy that maximises

the expected discounted dividends until ruin. Typical models for the

surplus process are compound Poisson processes, diffusion processes,

general renewal processes or discrete time processes. The reader is re-

ferred to Albrecher and Thonhauser (2009) and Avanzi (2009), where

an excellent overview of recent results is provided.

In Gerber and Shiu (2004) the authors propose the problem of

maximising the expected utility of discounted dividends until ruin

instead of maximising the expected discounted dividends until ruin.

This means that an insurance company is equipped with some utility

function that helps it to measure the accumulated dividends paid to

the shareholders. If this utility is increasing and concave, the company

is risk averse (see Remark 2.2). To the best of our knowledge, there

is only one work (Grandits et al., 2007), in which this idea was taken

up. More precisely, Grandits et al. (2007) consider a linear Brownian

motion model for the free surplus process and apply the exponen-

tial utility function to evaluate the discounted dividends until ruin. It

∗ Corresponding author. Tel.: +48 71 320 3183.

E-mail addresses: nicole.baeuerle@kit.edu (N. Bäuerle),

anna.jaskiewicz@pwr.edu.pl (A. Jaśkiewicz).

turns out that the mathematics involved in the analysis of this prob-

lem is quite different from the one used in the risk neutral case and

only partial results could be obtained. In contrast to the same problem

with a risk neutral insurance company, where the optimal dividend

payout strategy is of a barrier type (see e.g., Asmussen & Taksar, 1997),

the authors in Grandits et al. (2007) are not able to identify the struc-

ture of the optimal dividend policy rigorously. They show imposing

some further assumptions that there is a time dependent optimal

barrier.

We study the same problem but with a discrete time surplus pro-

cess. The risk neutral problem within such a framework can be found

in Section 1.2 in Schmidli (2008) or in Section 9.2 in Bäuerle and

Rieder (2011). By making use of the dynamic programming approach

the authors in Bäuerle and Rieder (2011) and Schmidli (2008) prove

that the optimal dividend payout policy is a stationary band-strategy.

Albrecher, Bäuerle, and Thonhauser (2011), on the other hand, con-

sider a discrete time model that is formulated with the aid of a gen-

eral Lévy surplus process but the dividend payouts are allowed only

at random discrete time points. This version can again be solved by

the dynamic programming arguments. However, the problem with

a general utility function is more demanding. Like in the continuous

time setting (Grandits et al., 2007), it requires a sophisticated analysis.

It is worth mentioning that Markov decision processes with general

utility functions have been already studied in Kadota, Kurano, and

Yasuda (1998) and Bäuerle and Rieder (2014). Moreover, there are

also some papers, where the specific utility functions are considered.

For example, Jaquette (1973, 1976) and Chung and Sobel (1987) are

among the first who examined discounted payoffs in Markov decision

processes with the decision maker that is equipped with a constant
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risk aversion, i.e., grades her random payoffs with the help of the

exponential utility function. The common feature of all the afore-

mentioned papers is the fact that they deal with bounded rewards or

costs. Therefore, their results cannot be directly applied to our case,

where the payoffs are unbounded. We make use of the special struc-

ture of the underlying problem and show that the optimal dividend

payout policy is a time dependent band-strategy. The value function

itself can be characterised as a solution to a certain optimality equa-

tion. Furthermore, we also study the dividend payout model with the

power utility function. As noted in Bäuerle and Rieder (2014), the

original Markov decision process can then be viewed as a Markov de-

cision process defined on the extended state space. We employ these

techniques to solve our model, but only in the first step, where we use

an approximation of the value function in the infinite time horizon by

value functions in the finite time horizons. In contrast to the exponen-

tial utility case, we can only partly identify the structure of the optimal

dividend payout policy. However, we are able to show that there is a

barrier such that when the surplus is above the barrier, it is always

optimal to pay down to a state below the barrier. The value function is

again characterised as a solution to some optimality equation. Sum-

ming up, the optimal dividend payout problem with the exponential

utility function can be solved completely in the discrete time case,

in contrast to the continuous-time problem in Grandits et al. (2007),

whilst for the case with the power utility function we are at least able

to identify the important global structure of the optimal policy.

The paper is organised as follows. In the next section we intro-

duce the model together with mild assumptions and general history-

dependent policies. Section 3 is devoted to a study of the exponential

utility case. We show first that the value function J for discounted

payoffs satisfies an optimality equation and give a lower and an up-

per bound for J. Then, we identify properties of the minimiser of

the right-hand side of the optimality equation. This enables us to

show that the minimiser indeed defines an optimal policy, which is

a non-stationary band-policy. The non-stationarity is based only on

the time-dependence. The power utility case is treated in Section 4.

We pursue here a little different approach, but it also leads to an

optimality equation. The policies obtained in this setting are really

history-dependent. Nonetheless, we are still able to show that the

optimal policy is of a barrier-type. In Section 5 we provide the policy

improvement algorithm for the model with the exponential utility.

Finally, Section 6 is devoted to concluding remarks and open issues.

2. The model

We consider the financial situation of an insurance company at

discrete times, say n ∈ N0 := 0, 1, 2, . . .. Assume there is an initial sur-

plus x0 = x ∈ X := Z and x0 ≥ 0. The surplus xn+1 at time n + 1 evolves

according to the following equation

xn+1 = xn − an + Zn+1, if xn ≥ 0 and xn+1 = xn, if xn < 0. (2.1)

Here an ∈ A(xn) := {0, . . . , xn}denotes the dividends paid to the share-

holders at time n, and Zn+1 represents the income (possibly negative)

of the company during the time interval from n to n + 1. More pre-

cisely, Zn+1 is the difference between premium and claim sizes in the

(n + 1)st time interval. Further, we assume that Z1, Z2, . . . are inde-

pendent and identically distributed integer-valued random variables

with distribution (qk)k∈Z, i.e., P(Zn = k) = qk, k ∈ Z. A dividend payout

problem in the risk theory can be viewed as a Markov decision process

with the state space X, the set of actions A(x) available in state x (for

completeness, we put A(x) = {0} for x < 0) and the transition proba-

bility q(·|x, a)of the next state, when x is the current state and a is the

amount of dividend paid to the shareholders. Note that the dynamics

of Eq. (2.1) implies that q(y|x, a) = qy−x+a for x ≥ 0 and q(x|x, a) = 1

if x < 0. For the set of admissible pairs D := {(x, a) : x ∈ X, a ∈ A(x)}
we define the function r : D �→ R as r(x, a) = a for x ∈ X.

The feasible history spaces are defined as follows �0 = X, �k =
Dk × X and �∞ = D∞. A policy π = (πk)k∈N0

is a sequence of mappings

from �k to A such that πk(ωk) ∈ A(xk), where ωk = (x0, a0, . . . , xk) ∈
�k. Let � be the class of all functions g : X �→ A such that g(x) ∈ A(x).
A Markov policy is π = (gk)k∈N0

where each gk ∈ �. By � and �M

we denote the set of all history-dependent and Markov policies, re-

spectively. By the Ionescu–Tulcea theorem (Neveu, 1965), for each

policy π and each initial state x0 = x, a probability measure P
π
x and a

stochastic process (xk, ak)k∈N0
are defined on �∞ in a canonical way,

where xk and ak describe the state and the decision at stage k, respec-

tively. By E
π
x we denote the expectation operator with respect to the

probability measure P
π
x .

Ruin occurs as soon as the surplus gets negative. The epoch τ of

ruin is defined as the smallest integer n such that xn < 0. The question

arises as to how the risk-sensitive insurance company, equipped with

some utility function will choose its dividend strategy. More precisely,

we shall consider the following optimisation problem

sup
π∈�

E
π
x Uγ

( ∞∑
k=0

βkr(xk, ak)

)
= sup

π∈�

E
π
x Uγ

(
τ−1∑
k=0

βkak

)
, x ≥ 0,

where β ∈ (0, 1) is a discount factor and either

(1) Uγ is the exponential utility function, i.e., Uγ (x) = 1
γ eγ x with

γ < 0, or

(2) Uγ is the power utility function, i.e., Uγ (x) = xγ with γ ∈ (0, 1).

Let Z be a random variable with the same distribution as Z1.

Throughout the paper the following assumptions will be supposed

to hold true.

(A1) E Z+ < +∞, where Z+ = max{Z, 0};

(A2) P(Z < 0) > 0.

Assumption (A2) allows to avoid a trivial case, when the ruin will

never occur under any policy π ∈ �.

Remark 2.1. In our study, we assume that the random variables {Zn}
only take integer values and the initial capital is also integer. From the

proof of Lemma 1.9 in Schmidli (2008), it follows that in our problem

we can restrict without loss of generality to the integer dividend

payments.

Remark 2.2. If the function Uγ is strictly concave and increasing

as in our case, then the quantity U−1
γ

(
E[Uγ (X)]

)
is called a certainty

equivalent of the random variable X. From the optimisation’s point of

view it does not matter which value U−1
γ

(
E[Uγ (X)]

)
or E[Uγ (X)] we

study, because the inverse function U−1
γ is monotonic. However, the

certainty equivalent has an important meaning. If we apply the Taylor

expansion, then the certainty equivalent can be written as follows

U−1
γ (E[Uγ (X)]) ≈ E X − 1

2
l(E X)Var[X],

where

l(y) = −U′′
γ (y)

U′
γ (y)

is called the Arrow–Pratt function of absolute risk aversion. Hence,

the second term accounts for the variability of X (for a discussion see

Bielecki & Pliska, 2003). If Uγ is concave like in our case, then l(·) ≥ 0

which means that the variance is subtracted. This fact implies that

the decision maker is risk averse.

3. The exponential utility function

In this section we assume that the insurer is risk averse and grades

her random payoffs by taking the expectations of the exponential

utility function of these random rewards. More precisely, we assume

that the decision maker is equipped with the constant risk coefficient
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