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a b s t r a c t

We consider a stochastic knapsack problem in which the event of overflow results in the problem ending
with zero return. We assume that there are n types of items available where each type has infinite supply.
An item has an exponentially distributed random weight with a known mean depending on its type and
the item’s value is proportional to its weight with a given factor depending on the item’s type. We have to
make a decision on each stage whether to stop, or continue to put an item of a selected type in the knap-
sack. An item’s weight is learned when placed to the knapsack. The objective of this problem is to find a
policy that maximizes the expected total values. Using the framework of dynamic programming, the opti-
mal policy is found when n ¼ 2 and a heuristic policy is suggested for n > 2.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the classic knapsack problem, given a set of items whose val-
ues and weights are deterministic, the objective is to find a subset
of items to put in the knapsack in order to maximize the total val-
ues without incurring overflow. The knapsack problem and its vari-
ants have many applications in such areas as transportation
scheduling, projects selection, resource allocation/management,
and others.

This paper considers the zero return if broken (ZRB) knapsack
problem. In ZRB knapsack problem, an item’s weight is unknown
before being put in but follows a known distribution; its value
per unit weight is given and determined by the item’s type. It’s
assumed that once the knapsack is broken from breaching the
capacity constraint, all the existing items in the knapsack are
wiped out without any salvage value, i.e., no additional items can
be inserted into the now empty knapsack and we stop there. The
ZRB knapsack problem is an adaptive stochastic knapsack problem,
for which a policy is defined as a schedule to put in items sequen-
tially which adapts to the information feedback on the updated
system state. The objective is to find a policy which maximizes
the expected total return.

The ZRB knapsack problem can be applied in the situations
where breaking knapsack triggers the wipeout effect, e.g., over-uti-
lization of the credit line freezes account actions; medicine over-
dosing negates the desired function, etc. Another application is in

space exploration where loading over the capacity limit of a space
craft leads to total lost of all on-board cargos. The ZRB knapsack
problem is also important as its optimal expected return provides
a lower bound on the optimal expected return in any adaptive
knapsack problem which yields the same return as in our model
when stopping occurs before the knapsack reaches capacity but
where the return when the knapsack’s capacity is exceeded is
any arbitrary nonnegative function of the sequence of types and
values of the items in the knapsack.

1.1. Literature review

The 0–1 knapsack problem (see Kellerer, Pferschy, & Pisinger
(2004)) is one of NP-hard problems including traveling salesman
problems, integer programming, etc. Martello, Pisinger, and Toth
(2000) give a comprehensive review with further discussions on
techniques commonly used in solving the knapsack problem. A sto-
chastic knapsack problem (SKP) differs from the classic model by
allowing randomness in the candidate items’ weights or values
(or both). According to how we assign items to the knapsack, there
exist two categories of SKP: static and adaptive.

In a static SKP, the only decision made is to choose a subset of
items that are simultaneously put in the knapsack. Kosuch and
Lisser (2010, 2011) discuss a static SKP which assumes that a cost
proportional to the overflow (that is, the amount by which the sum
of the weights of the items put into the knapsack exceed its capac-
ity) is incurred whenever the knapsack’s capacity is exceeded, as
well as one with a constraint on the probability of exceeding the
capacity. They propose methods for locating upper and lower
bounds to complement the branch and bound search. Under the
assumption of normal distributions on items weights, Cohn and
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Mit (1998) explore dominance rules among candidate items and
illustrate a search algorithm based on this. Merzifonluoğlu,
Geunes, and Romeijn (2012) extend the discussion to include a
penalty cost for capacity overflow and a salvage value for unused
capacity. With results from the study of a continuous relaxation
of the problem, Merzifonluoglu et al. develop a customized branch
and bound search for the optimal decision and a high-quality heu-
ristic policy. Lee and Oh (1997) discuss the asymptotic property
when the knapsack capacity increases, and they use the asymptotic
value-to-capacity ratio to approximate the optimal solution for a
large knapsack capacity.

In an adaptive SKP, the decision maker has the option to select
an available item or to stop on each stage while taking into account
the latest knapsack state information from the system feedback.
Some adaptive SKP papers have avoided the possibility of a broken
knapsack by assuming deterministic item weights; others have
included penalty terms to account for any overcapacity amount;
and others have imposed a chance constraint on the overflow prob-
ability. In a SKP that assumes random values but deterministic
weights, Iravani, Ilhan, and Daskin (2011) discussed the adaptive
target achievement problem where the objective is to maximize
the probability of achieving a target total value. They give a heuris-
tic policy with limited look-ahead capabilities and show that it per-
forms well. Lu, Chiu, and Cox (1999) consider the project selection
problem with a deadline where projects with unknown value but
deterministic resource requirements arrive to the system one by
one according to a stochastic process. They give a simple form of
the optimal project acceptance rule, although it’s usually computa-
tionally expensive to lay out the decision map. Lin, Lu, and Yao
(2008) discuss a similar problem in revenue management, where
offers with stochastic price and quantity information arrive at each
tim e point, and the decision is whether to accept or decline the
offer. They propose a class of switch-over policies and find the opti-
mal one in the class which has asymptotic optimality as the prob-
lem size scales up. And they also apply the result in the dynamic/
flexible pricing model. Van Slyke and Young (2000) study the finite
horizon SKP and its applications in yield management. In SKP with
random weights, Schilling (1994) gives results on the asymptotic
optimal values. Ross and Tsang (1989) formulate the network
admission problem in SKP and present an optimal static control
by dynamic programming. Derman, Lieberman, and Ross (1978)
consider a renewal decision problem that is equivalent to an adap-
tive SKP where the value of an item depends only on its type rather
than being proportional to its weight, and where the problem con-
tinues until the knapsack is broken at which point a final return
equal to the sum of the values of al l but the final item put in the
knapsack is earned. Dean, Goemans, and Vondrdk (2004) study
the benefit of adaptivity in the SKP with random weights where
they assume the final overflowing item contributes no value. They
bound the adaptivity gap, which measures the ratio of the optimal
adaptive policy value to the optimal static policy value, to a factor of
four; and they also devise a polynomial-time adaptive policy that
approximates the optimal policy with a factor of 3þ e for any posi-
tive e. Kleywegt and Papastavrou (1998, 2001) define a class of very
comprehensive SKP, the dynamic stochastic knapsack problems
(DSKP). It assumes items with unknown values and weights arrive
to the system stochastically. The item’s value and weight are
revealed upon its arrival and the decision to accept or to reject
has to be made. Penalty incurred by rejection, holding cost, salvage
value of items, etc. are all incorporated in the DSKP. The structural
results on the optimal policy for DSKP are given in the two papers.

1.2. Outline

In Section 2, the ZRB knapsack problem is defined and formu-
lated mathematically under the dynamic programming frame-

work. Preliminary notations are given in this part before proceed
to explore the characteristics of the model structure. We show a
type preference order and demonstrate the optimal stopping rule
in the latter part of the section. In Section 3, we discuss the prob-
lem when n ¼ 2 and propose an optimal policy in this case. The
general ideas behind the optimality proof are given alongside sup-
porting propositions which lead to the core theorem in this section.
We also summarize into an easy-to-implement action selection
strategy from the optimal policy for n ¼ 2. In Section 4, we try to
generalize the optimal policy for n ¼ 2 to a policy that’s applicable
for any n using the same logic. We evaluate the generalized policy
and analyze its limitations. A second heuristic policy for general n
is then given and tested in a numerical example. We conclude the
paper with a brief introduction of our ongoing work in Section 5.

In this paper, we define the indicator function IA ¼ 1 if the event
A occurs, otherwise IA ¼ 0. We put the proofs which involve mainly
algebraic manipulations in the Appendix A.

2. Problem setting

Consider a knapsack with a deterministic capacity w. There are
n different types of items available to be put to the knapsack, and
each type has infinite supply of items. A type i item, 1 6 i 6 n, has
value v iWi, where v i is a deterministic positive value and Wi is the
item’s weight where Wi � ExpðwiÞ and wi is the mean weight. It is
assumed that an item’s weight is independent with the weights of
other items both within the same type and between types. At each
stage, we can either choose to stop and leave the system with all
the existing values in the knapsack, or, we can choose to select
an item of any type to put to the knapsack. An item’s weight is
immediately revealed after its being put to the knapsack. If the
knapsack is broken, because total weights of items in the knapsack
exceed the capacity, we are forced out of the system with no return
at all. Otherwise, we move to the next stage. We call the model
defined above as the zero return if broken (ZRB) knapsack problem.
The objective of the ZRB knapsack problem is to find a policy that
achieves the maximal expected return.

2.1. Dynamic programming framework

The ZRB knapsack problem can be formulated in a dynamic pro-
gramming framework. Let ðr;vÞ be the state variable of the model
where r is the remaining capacity and v is the total values of items
in the knapsack. Let Vðr;vÞ be the optimal expected value function
at state ðr;vÞ.

Optimality Equations where ki ¼ 1
wi
; 8i 2 ½1;n�,

Vðr; vÞ ¼max v ; max
i¼1;...;n

Z r

0
kie�ki tVðr � t;v þ v itÞdt

� �� �
Vðr; vÞ ¼ 0; if r < 0: ð1Þ

Given n types of different items, we first want to discard those types
which will never be used by an optimal policy.

Proposition 1. If v i < v j; wi > wj, then a type i item should never be
used.

Proof. The idea of the proof comes from Smith (1978). We
construct a composite component which consists of N type j items,
where N is a geometric distributed random variable with parame-
ter wj=wi. It is easy to see this composite component has weight
that is exponentially distributed with mean wj

wj=wi
¼ wi. Since

v i < v j, it is always better to replace type i item with this compos-
ite component because the composite item has higher unit weight
value than type i item does, and at the same time the weight of the
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