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a b s t r a c t

We propose a new distributed heuristic for approximating the Pareto set of bi-objective optimization
problems. Our approach is at the crossroads of parallel cooperative computation, objective space decom-
position, and adaptive search. Given a number of computing nodes, we self-coordinate them locally, in
order to cooperatively search different regions of the Pareto front. This offers a trade-off between a fully
independent approach, where each node would operate independently of the others, and a fully central-
ized approach, where a global knowledge of the entire population is required at every step. More specif-
ically, the population of solutions is structured and mapped into computing nodes. As local information,
every node uses only the positions of its neighbors in the objective space and evolves its local solution
based on what we term a ‘localized fitness function’. This has the effect of making the distributed search
evolve, over all nodes, to a high quality approximation set, with minimum communications. We deploy
our distributed algorithm using a computer cluster of hundreds of cores and study its properties and per-
formance on qMNK-landscapes. Through extensive large-scale experiments, our approach is shown to be
very effective in terms of approximation quality, computational time and scalability.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context and motivation

Many real-life problems arising in a wide range of application
fields can be modeled as multi-objective optimization problems.
One of the most challenging issues in multi-objective optimization
is to identify the set of Pareto optimal solutions, i.e., solutions pro-
viding the best compromises between the objectives. It is well
understood that computing such a set is a difficult task. Designing
efficient heuristic algorithms for multi-objective optimization
requires one to tackle the classical issues arising in the single-
objective case (e.g., intensification vs. diversification), but also
and more importantly, to find a set of solutions having good prop-
erties in terms of trade-off distribution in the objective space.

When dealing with such sophisticated problems, it is with no
surprise that most existing approaches are costly in terms of com-
putational complexity. A natural idea is to subdivide the problem

being solved into subtasks which can be processed in parallel. This
is a very intuitive idea when dealing with computing intensive
applications, not only in the optimization field but in computer
science in general. Besides, with the increasing popularity of high
performance (e.g., clusters), massively parallel (e.g., multi-cores,
GPUs), and large-scale distributed platforms (e.g., grids, clouds), it
is more and more common to distribute the computations among
available resources taking much benefit of the induced huge
computational power. Many parallel/distributed models and
algorithms have been designed for specific optimization contexts.
This witnesses the hardness of the tackled problems and the com-
plexity of related algorithmic issues. Multi-objective optimization
does not stand for an exception, since the multi-objective nature
of the problem being solved induces additional computing inten-
sive tasks.

One can find an extensive literature on designing parallel/
distributed multi-objective solving methods (Van Veldhuizen,
Zydallis, & Lamont, 2003; Coello Coello, Lamont, & Van
Veldhuizen, 2007; Talbi et al., 2008; Bui, Abbass, & Essam, 2009).
Most existing approaches are designed in a top-down manner,
starting with a centralized algorithm requiring a global information
about the search state; and then trying to adapt its components to
the distributed/parallel computing environment. This design pro-
cess usually requires to tackle parallel-computing issues which
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are challenging to solve efficiently and/or may impact the perfor-
mance of the original sequential optimization algorithm. In con-
trast, locality in distributed computing is a well-known general
paradigm that states that global information is not always neces-
sary to solve a given problem and local information is often suffi-
cient (see e.g., Peleg (2000)). Therefore, adopting a localized
approach when tackling a given problem can allow one to derive
novel algorithms which are by essence parallel and designed in a
bottom-up manner. Those algorithms are more likely to allow dis-
tributed resources to coordinate their actions/decisions locally, and
to take full benefit of the available computational power.

1.2. Contribution overview

In this paper, we describe a new simple and effective generic
scheme dedicated to bi-objective heuristic search in distributed/
parallel environments. Our approach is inherently local, meaning
that it is thought to be independent of any global knowledge. Con-
sequently, its deployment on a large-scale distributed environment
does not raise parallel-specific issues.

Generally speaking, each computing node contains a candidate
solution and is able to search in a region of the search space in
coordination with other neighboring nodes. The sub-region where
a node operates is delimited implicitly in an adaptive way based on
the relative position of its cooperating neighbors in the objective
space. The way local cooperation is designed, as well as its induced
optimization process, are the heart of our approach. In our study,
we propose novel localized cooperative strategies inspired by the
classical weighted-sum scalarizing function (Ehrgott, 2005) and
hypervolume-based approaches (Zitzler & Thiele, 1999), without
requiring any global knowledge about the search state. The
designed rules allow distributed nodes to self-coordinate their
decisions adaptively and in an autonomous way while communi-
cating a minimal amount of information; thus being effective when
deployed on a real and large-scale distributed environment. To
evaluate the performance of our approach, we conduct extensive
experiments involving more than two hundred computing cores,
and using qMNK-landscapes (Verel, Liefooghe, Jourdan, &
Dhaenens, 2013) as a benchmark. As baseline algorithms, we con-
sider both a pure parallel strategy and an inherently sequential
approach. Our experimental results show that our localized
approach is extremely competitive in terms of approximation
quality; while being able to achieve near-linear speed-ups in
terms of computational complexity. Besides, we provide a compre-
hensive analysis of our approach highlighting its properties and
dynamics.

1.3. Outline

In Section 2, we review existing works related to multi-
objective optimization, especially those dealing with parallel and
distributed issues. In Section 3, we describe the distributed local-
ized bi-objective search approach proposed in the paper, and give
a generic fully distributed scheme which can be instantiated in
several ways. In Section 4, we provide the experimental setup of
our analysis. In Section 5, we present numerical results and we
discuss the properties of our approach. Finally, we conclude the
paper in Section 6 and we discuss some open research issues.

2. Background on multi-objective optimization

In the following, we first introduce the basics of multi-objective
optimization and then we position our work with respect to the
literature.

2.1. Definitions

A multi-objective optimization problem can be defined by an
objective function vector f ¼ ðf1; f2; . . . ; fMÞ with M P 2, and a set
X of feasible solutions in the solution space. In the combinatorial
case, X is a discrete set. Let Z ¼ f ðXÞ# RM be the set of feasible
outcome vectors in the objective space. To each solution x 2 X is
then assigned exactly one objective vector z 2 Z, on the basis of
the function vector f : X ! Z with z ¼ f ðxÞ. In a maximization con-
text, an objective vector z 2 Z is dominated by an objective vector
z0 2 Z, denoted by z � z0, iff 8m 2 f1;2; . . . ;Mg; zm 6 z0m and
9m 2 f1;2; . . . ;Mg such that zm < z0m. By extension, a solution
x 2 X is dominated by a solution x0 2 X , denoted by x � x0, iff
f ðxÞ � f ðx0Þ. A solution xH 2 X is said to be Pareto optimal (or effi-
cient, non-dominated), if there does not exist any other solution
x 2 X such that xH � x. The set of all Pareto optimal solutions is
called the Pareto set (or the efficient set). Its mapping in the objec-
tive space is called the Pareto front. One of the most challenging
task in multi-objective optimization is to identify a complete Par-
eto set of minimal size, i.e. one Pareto optimal solution for each
point from the Pareto front.

However, in the combinatorial case, generating a complete Par-
eto set is often infeasible for two main reasons (Ehrgott, 2005): (i)
the number of Pareto optimal solutions is typically exponential in
the size of the problem instance and (ii) deciding if a feasible solu-
tion belongs to the Pareto set may be NP-complete. Therefore, the
overall goal is often to identify a good Pareto set approximation. To
this end, heuristics in general, and evolutionary algorithms in par-
ticular, have received a growing interest since the late eighties
(Deb, 2001; Coello Coello et al., 2007).

2.2. Literature overview

A large body of literature exists concerning parallel multi-
objective algorithms. Two interdependent issues are usually
addressed: (i) how to decrease the computational complexity of
a specific multi-objective algorithms and (ii) how to make parallel
processes cooperate to improve the quality of the Pareto set
approximation, see e.g., Zhu and Leung (2002), Jozefowiez, Semet,
and Talbi (2002), Deb, Zope, and Jain (2003), Coello Coello and
Sierra (2004), Melab, Talbi, and Cahon (2006), Tan, Yang, and Goh
(2006), Coello Coello et al. (2007), Mostaghim, Branke, and
Schmeck (2007), Hiroyasu, Yoshii, and Miki (2007), Durillo,
Nebro, Luna, and Alba (2008), Talbi et al. (2008), Figueira,
Liefooghe, Talbi, and Wierzbicki (2010), Mostaghim (2010). Often,
parallel and cooperative techniques implicitly come with the idea
of decomposing the search into many sub-problems so that a diver-
sified set of solutions, in terms of Pareto front quality, can be
obtained. The main challenge is on defining efficient strategies to
either divide the search space or the objective space.

For instance, the population induced by a particle swarm multi-
objective algorithm is divided by Mostaghim et al. (2007) into sub-
swarms which are then coordinated through a master–slave
approach by injecting the so-called subswarm-guides in each
sub-population. The diffusion model (Van Veldhuizen et al.,
2003) and the island model (Tomassini, 2005) have also been
extensively adopted to design distributed cooperative methods.
In the so-called cone separation technique (Branke, Schmeck,
Deb, & Reddy, 2004), the objective space is divided into regions dis-
tributed over some islands. Each island explores the same search
space. When a solution is outside its corresponding objective space
region, it is migrated to neighboring islands. This idea is refined by
Streichert, Ulmer, and Zell (2005) using a clustering approach. Bui
et al. (2009) propose a distributed framework where a number of
adaptive spheres spanning the search space and controlled by an
evolutionary algorithm is studied. In Zhu and Leung (2002), a
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