FISEVIER

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells

Fei Zhang ^{a, b, c}, Xiaoming Zhao ^{a, c}, Chenyi Yi ^b, Dongqin Bi ^b, Xiangdong Bi ^d, Peng Wei ^e, Xicheng Liu ^{a, c}, Shirong Wang ^{a, c, *}, Xianggao Li ^{a, c}, Shaik Mohammed Zakeeruddin ^{b, f, **}, Michael Grätzel ^{b, ***}

- ^a School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
- b Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne. Switzerland
- ^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, China
- ^d Department of Physical Sciences, Charleston Southern University, 9200 University Blvd., Charleston, SC 29485, USA
- e Affinity Research Chemicals, Inc. 9 Germay Drive, Suite 300B, Wilmington, DE 19804, USA
- f Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia

ARTICLE INFO

Article history: Received 1 July 2016 Received in revised form 1 August 2016 Accepted 2 August 2016 Available online 3 August 2016

Keywords: Triphenylamine Hole transport material Dopant-free Perovskite Solar cell

ABSTRACT

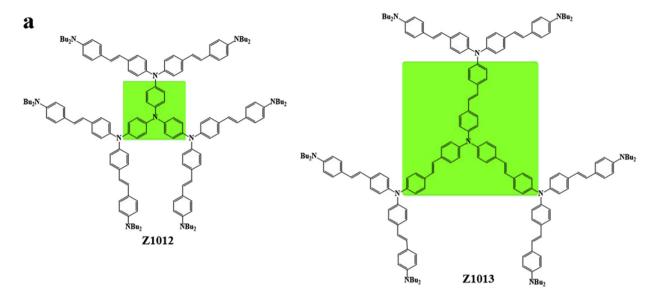
Two star-shaped TPA-based small-molecule materials (Z1012 and Z1013) were designed and synthesized in this paper. These molecules show high hole mobility and suitable energy levels for CH₃NH₃PbI₃-based perovskite solar cells. Photovoltaic cells based on the Z1013 without any dopants or additives achieve an excellent power conversion efficiency (PCE) of 15.4%, which is comparable to devices based on state-of-art p-doped *spiro*-OMeTAD. Moreover, the devices based on these two HTMs show much better stability than that of devices based on *spiro*-OMeTAD when aging in ambient air both at room temperature and 80 °C. These results demonstrate that star-shape TPAs could be excellent dopant-free HTMs for perov-skite solar cells and hold promise to replace the p-doped *spiro*-OMeTAD, which is important for the fabrication of cost-effective and stable devices.

© 2016 Published by Elsevier Ltd.

1. Introduction

Organic—inorganic hybrid perovskite solar cells (e.g. (RNH₃) PbX₃ (R = alkyl, X = halogen)) have been recently receiving great attention owing to their outstanding features such as superb photovoltaic performance and low cost [1–4]. Since hybrid perovskite solar cells were first demonstrated by Kojima et al., cells based on such materials have shown an unprecedented increase of power

E-mail addresses: wangshirong@tju.edu.cn (S. Wang), shaik.zakeer@epfl.ch (S.M. Zakeeruddin), michael.graetzel@epfl.ch (M. Grätzel).


conversion efficiency (PCE) to 22.1% in subsequent years [5–7].

The best performing device configuration of perovskite solar cell (PSC) is based on mesoporous TiO2 scaffold, which is infiltrated with perovskite material and coated with the hole-transport materials (HTMs) [8]. Electrons and holes were produced in the perovskite absorber upon photo-excitation, the electrons were diffused to the TiO₂, and the holes were transferred to the HTMs. These photo-generated charge carriers are subsequently collected as photocurrent at the front and back contacts of the solar cell [2,9]. To date, a great number of HTMs have been developed and incorporated in PSCs, which are composed of organic and inorganic holeconductors [9]. Among the organic semiconductors, triphenylamine (TPA) containing compounds 2,2',7,7'-tetrakis (N,N'-di-pmethoxy-phenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) along with poly-triarylamine (PTAA) have shown to be most effective. However, their relatively high cost of synthesis along with the need to use high levels of dopants present caveats for practical applications. The dopants and additives in the HTMs contribute to

^{*} Corresponding author. School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China.

^{**} Corresponding author. Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland.

^{***} Corresponding author. Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6 CH-1015, Lausanne, Switzerland.

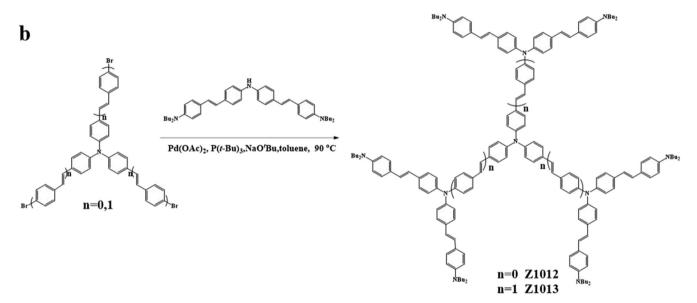


Fig. 1. (a) Molecular structures of Z1012 and Z1013; (b) Synthetic route for Z1012 and Z1013.

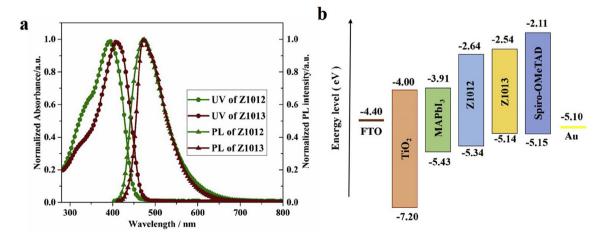


Fig. 2. (a) UV-Vis absorption and photoluminescence spectra of Z1012 and Z1013 in THF solution ($c = 1.0 \times 10^{-5} \text{ mol L}^{-1}$); (b) Energy level diagram of the corresponding materials used in perovskite solar cells.

Download English Version:

https://daneshyari.com/en/article/4766188

Download Persian Version:

https://daneshyari.com/article/4766188

<u>Daneshyari.com</u>