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a b s t r a c t

The distributed permutation flowshop problem has been recently proposed as a generalization of the reg-
ular flowshop setting where more than one factory is available to process jobs. Distributed manufacturing
is a common situation for large enterprises that compete in a globalized market. The problem has two
dimensions: assigning jobs to factories and scheduling the jobs assigned to each factory. Despite being
recently introduced, this interesting scheduling problem has attracted attention and several heuristic
and metaheuristic methods have been proposed in the literature. In this paper we present a scatter search
(SS) method for this problem to optimize makespan. SS has seldom been explored for flowshop settings.
In the proposed algorithm we employ some advanced techniques like a reference set made up of
complete and partial solutions along with other features like restarts and local search. A comprehensive
computational campaign including 10 existing algorithms, together with statistical analyses, shows that
the proposed scatter search algorithm produces better results than existing algorithms by a significant
margin. Moreover all 720 known best solutions for this problem are improved.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling deals with the allocation of resources, typically
machines, to tasks (commonly referred to as jobs) over time with
the goal of optimizing a given objective (Pinedo, 2012). Scheduling
is an important problem that appears mainly in manufacturing
industries. It is well known that good schedules contribute greatly
to the overall performance of a company (McKay, Pinedo, &
Webster, 2002). The layout of the machines on the production
floor, along with the flow of the jobs in the machines, together with
a myriad of constraints and real life settings determine the type of
scheduling problem to solve. The flowshop scheduling problem
(FSP) is arguably the most common processing layout in practice
as it is typical for manufacturing plants to manufacture a given
family of products that have to visit machines in a known order.
For example, in car manufacturing, the painting of the car body
must go after the body as been welded and before any assembly
operation, hence a flowshop structure. Reisman, Kumar, and
Motwani (1997) reviewed practical cases and concluded that the
flowshop problem has many real life applications. This applicabil-
ity of the flowshop is also highlighted in the many exiting reviews

from the literature like Framinan, Gupta, and Leisten (2004), Ruiz
and Maroto (2005), Hejazi and Saghafian (2005) and Gupta and
Stafford (2006). As a matter of fact, once generalized to hybrid
flowshops or flexible flowline problems, many production prob-
lems can be modeled after a flowshop (Linn & Zhang, 1999;
Vignier, Billaut, & Proust, 1999; Wang, 2005; Quadt & Kuhn,
2007; Ruiz & Vázquez-Rodríguez, 2010; Ribas, Leisten, &
Framinan, 2010). The FSP can be formally described as follows: A
set N of n different and independent jobs has to be scheduled. Jobs
usually model client orders or batches of products to be manufac-
tured after a production planning process has been carried out
(Pochet & Wolsey, 2006). Each job j; j 2 N has to visit, in order,
all m machines in the set of machines M. Without loss of generality,
each job visits first machine 1, then machine 2 and so on until
machine m. A job cannot go to the next machine until it is finished
in the current machine and a machine cannot process more than
one job at the same time. As a result of the machines being
disposed in series, each job is broken down into m tasks, one per
machine. Each task from a job j; j 2 N needs a given processing
time at each machine i; i 2 M. This processing time is denoted as
pij and it is deterministic, known in advance and usually non-
negative, represented by an integer quantity.

The objective in the FSP is to find a schedule or processing
sequence of all the jobs in the machines such that a given
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optimization criterion is optimized. According to the previously
cited review papers, the most commonly studied objective is the
minimization of the maximum completion time or makespan,
denoted as Cmax. Given the completion time of a job in the last
machine m, denoted as Cj, the makespan is then the minimization
of the maximal Cj; j ¼ 1; . . . ;n. Since there are as many possible
schedules as job sequences at each machine, the total number of
solutions is ðn!Þm, i.e., all possible job permutations at each
machine, considering that these permutations can change from
machine to machine. Given this huge search space, the FSP is usu-
ally simplified to what is called the Permutation Flowshop Sched-
uling Problem or PFSP by forbidding job-passing, i.e., once the
production sequence is fixed for a machine, all machines follow
the same production sequence. This brings down the total number
of solutions to n!. Using the well known three field notation for
scheduling problems (Graham, Lawler, Lenstra, & Rinnooy Kan,
1979; Pinedo, 2012), the PFSP with makespan criterion is denoted
as F=prmu=Cmax.

This problem was first studied almost 60 years ago by Johnson
(1954) where the well known Johnson’s algorithm was proposed
for solving the two machine version. For three or more machines,
the problem is known to be NP-Complete in the strong sense
Garey, Johnson, and Sethi (1976). Nowadays, the literature on the
PFSP is immense and the problem and many variants have been
thoroughly studied. The topic is so widely studied that there are
even some dedicated monographs such as Chakraborty (2009)
and Emmons and Vairaktarakis (2012), or even for some variants,
like lot streaming in Sarin and Jaiprakash (2007). However, there
is one extension that was only recently presented. In Naderi and
Ruiz (2010) and Naderi and Ruiz (2010) studied a variant that
was referred to as the Distributed Permutation Flowshop Schedul-
ing Problem or DPFSP. In essence, the regular PFSP considers one
single factory where products are manufactured. However, multi-
factory enterprises are much more competitive in a globalized
economy. The literature on manufacturing systems abounds with
examples where it is shown that distributed manufacturing is
key for high product quality, low production costs and reduced
management risks, among many other benefits (Wang, 1997;
Moon, Kim, & Hur, 2002; Kahn, 2004, among many others). Distrib-
uted manufacturing is now a topic of interest as the recent editorial
in a special issue of a reputable manufacturing journal shows
(Chan & Chung, 2013). In that editorial and in many of the papers
of the cited special issue the importance and benefits of distributed
manufacturing are praised and highlighted. In the DPFSP there is
an important added complexity with respect to the PFSP: Jobs need
to be assigned to factories and then a schedule must be built for
each factory. More formally, the DPFSP extends the regular permu-
tation flowshop in the following way: The set N of n jobs must be
processed by a set G of F identical factories. Each factory has the
same set M of m machines. The processing times of all the tasks
of a given job do not change from factory to factory. Once assigned
to a factory, a job has to be completed in that factory. The objective
is to minimize the maximum makespan among all factories. Naderi
and Ruiz (2010) referred to this problem as DF=prmu=Cmax. The
same authors demonstrated that no factory must be left empty
with no jobs assigned (given n > F) as this does not improve the
makespan value. They also concluded that the total number of

solutions in the DPFSP is n� 1
F � 1

� �
n! Additionally, since the DPFSP

reduces to the regular PFSP if F ¼ 1, it is easy to conclude that the
DPFSP is also an NP-Hard problem.

From the paper of Naderi and Ruiz (2010), several other authors
built upon those results and several methodologies have been pro-
posed to solve this new problem. Naderi and Ruiz (2010) proposed
some mathematical models, simple heuristics and local search

methods. Therefore, more complex methodologies might reveal
new interesting solutions to this hard combinatorial problem. Fur-
thermore, given the existing recent methods proposed, it is also
worthwhile comparing the effectiveness and efficiency of existing
approaches to ascertain which are the state-of-the-art methods.
These are some of the objectives of this paper. When deciding
about which advanced techniques could be applied to the DPFSP
we observed that simple local search based methods failed to
escape strong local optima and therefore we chose a powerful
methodology: Scatter Search (Glover, Laguna, & Martí, 2000;
Laguna & Martí, 2003; Martí, Laguna, & Glover, 2006, among oth-
ers). Contrary to many existing metaheuristic frameworks, which
have been applied several times to flowshop problems, scatter
search (SS) has seldom been used for these scheduling settings.
References with applications of scatter search to regular flowshops
are scarce. Nowicki and Smutnicki (2006) presented some meth-
ods, including ideas from path relinking and scatter search to the
regular PFSP with makespan criterion but failed to significantly
advance the state-of-the-art. In a short paper, Saravanan, Noorul
Haq, Vivekraj, and Prasad (2008) proposed another scatter search
method for the same problem and reported average percentage
deviations over the best known solutions for the benchmark of
Taillard (1993) of a little over 1%. This is clearly not better than
the deviations below 0.5% given by the simpler Iterated Greedy
(IG) method of Ruiz and Stützle (2007) or the deviations of just
0.22% given in Vallada and Ruiz (2009). As regards the PFSP, it
seems that there are no other noteworthy scatter search applica-
tions. Therefore, it is plausible to think that scatter search methods
for flowshop problems still have some headroom for improvement
and therefore we choose them for this paper. Furthermore, the
controlled diversification in scatter search shows, as we will
empirically demonstrate, great strength in the DPFSP.

The remainder of this paper is organized as follows: Section 2
provides a comprehensive literature review on the DPFSP. Section 3
presents in detail the proposed scatter search approach. This
method is calibrated in Section 4. In the same Section, almost all
relevant algorithms from the literature on the DPFSP are reimple-
mented and carefully evaluated. Through comprehensive compu-
tational and statistical analyses we show that the presented
scatter search algorithm can be considered as the new state-
of-the-art method for the DPFSP and makespan minimization.
Finally, Section 5 concludes this paper and proposes some avenues
for future research.

2. Literature review

In Naderi and Ruiz (2010) the authors presented six different
Mixed Integer Linear Programming models for the DPFSP together
with 12 heuristics that resulted from applying two different job to
factory assignment rules to six famous heuristics for the regular
flowshop problem. The two rules are the following:

� Assign a given job j to the factory with the lowest current Cmax,
not including job j.
� Assign job j to the factory which completes it at the earliest time,

i.e., the factory resulting in the lowest Cmax after assigning job j.

The rules are applied each time a job is scheduled. From the six
tested heuristics the NEH method of Nawaz, Enscore, and Ham
(1983) with the second job to factory assignment rule (referred
to as NEH2) resulted in the best heuristic performance. Apart from
the heuristic methods, Naderi and Ruiz (2010) presented a simple
Variable Neighborhood Descent (VND, Mladenović & Hansen
(1997)) starting with the NEH2 solution and with two neighbor-
hoods. One being the insertion local search for all factories (until
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