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a b s t r a c t

We consider a clique relaxation model based on the concept of relative vertex connectivity. It extends the
classical definition of a k-vertex-connected subgraph by requiring that the minimum number of vertices
whose removal results in a disconnected (or a trivial) graph is proportional to the size of this subgraph,
rather than fixed at k. Consequently, we further generalize the proposed approach to require vertex-
connectivity of a subgraph to be some function f of its size. We discuss connections of the proposed
models with other clique relaxation ideas from the literature and demonstrate that our generalized
framework, referred to as f-vertex-connectivity, encompasses other known vertex-connectivity-based
models, such as s-bundle and k-block. We study related computational complexity issues and show that
finding maximum subgraphs with relatively large vertex connectivity is NP-hard. An interesting special
case that extends the R-robust 2-club model recently introduced in the literature, is also considered. In
terms of solution techniques, we first develop general linear mixed integer programming (MIP) formula-
tions. Then we describe an effective exact algorithm that iteratively solves a series of simpler MIPs, along
with some enhancements, in order to obtain an optimal solution for the original problem. Finally, we
perform computational experiments on several classes of random and real-life networks to demonstrate
performance of the developed solution approaches and illustrate some properties of the proposed clique
relaxation models.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G ¼ ðV ; EÞ be a simple undirected graph with a set of n verti-
ces (nodes) V and a set of edges E � V � V . Two vertices v and v 0 are
connected if G contains a path between them; graph G is connected
(disconnected) if all its vertices are pairwise connected (there exists
a pair of vertices that are not connected). The vertex connectivity of a
graph G, referred to as jðGÞ, is defined as the minimum number of
vertices of G whose removal results in either a disconnected graph
or a trivial graph (i.e., consisting of exactly one vertex) (Kirousis,
Serna, & Spirakis, 1993; Pattillo, Youssef, & Butenko, 2013). We
say that graph G is k-vertex-connected if its vertex connectivity is
at least k, i.e., jðGÞP k. Vertex connectivity and k-vertex connectiv-
ity of a given graph can be verified in polynomial time (Galil, 1980).
Since vertex connectivity is among the fundamental graph proper-
ties, there is a considerable body of work on this topic, see Galil
(1980); Kammer and Täubig (2005); Kirousis et al. (1993); Matula
(1969); Reif and Spirakis (1985) and references therein.

The longest distance (or, equivalently, the length of a longest
shortest path) between all pairs of vertices in G is referred to as
the diameter of G, i.e., diamðGÞ ¼ maxv ;v 02GdGðv ;v 0Þ, where
dGðv ;v 0Þ denotes the length of a shortest path between v and v 0 in
G. The density qðGÞ of graph G ¼ ðV ; EÞ is defined as the ratio of
the number of edges jEj to the maximum possible number of edges
in a graph with jV j vertices, i.e., qðGÞ ¼ jEj= jV j2

� �
. Denote by NGðvÞ

the set of all neighbors of v 2 V in G, i.e., v 0 2 NGðvÞ for all
ðv ;v 0Þ 2 E. Then the degree of v in G is given by degGðvÞ ¼ jNGðvÞj.

A graph G ¼ ðV ; EÞ is complete if all its pairs of vertices are con-
nected by an edge. For any subset of vertices S;G½S� ¼ ðS; ðS� SÞ \ EÞ
denotes the subgraph induced by S on G. A clique C is a subset of V
such that the subgraph G½C� induced by C in G is complete (Luce &
Perry, 1949). The maximum clique problem is to find a clique of
maximum cardinality in G, see, e.g., Bomze, Budinich, Pardalos,
and Pelillo (1999). This problem is NP-hard (and its decision ver-
sion is NP-complete) (Garey & Johnson, 1979).

A clique is a very intuitive and simple concept of a cohesive sub-
graph with numerous important applications (Bomze et al., 1999;
Butenko & Wilhelm, 2006). Cliques possess a number of ‘‘ideal’’
cohesiveness properties (Pattillo, Youssef, et al., 2013): each vertex
is connected to all other vertices, a clique has maximum possible
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edge density as well as edge and vertex connectivity, the distance
between any pair of vertices is one, etc. However, in many practical
scenarios cliques are overly restrictive graph structures. Thus, a
number of clique relaxation models have been introduced in the
literature, see, e.g., Balasundaram, Butenko, Hicks, and Sachdeva
(2011); Balasundaram, Butenko, and Trukhanov (2005);
Veremyev and Boginski (2012a).

A unifying taxonomic framework proposed by Pattillo, Youssef,
et al., 2013 demonstrates that all existing clique relaxation models
in the literature are based on relaxing some of the elementary clique-
defining properties, namely, distance, diameter, domination, degree,
density and connectivity. These relaxations are further classified
into absolute and relative ones. One illustrative example of an abso-
lute (diameter-based) relaxation is an s-club, which is defined as a
subset S # V such that the subgraph G½S� induced by S in G has diam-
eter of at most s, i.e., diamðG½S�Þ 6 s, where s is a fixed positive inte-
ger (Balasundaram et al., 2005; Veremyev & Boginski, 2012a).
Clearly, requiring s ¼ 1 results in a clique, while relaxing s P 2
defines a subgraph with somewhat less restrictive diameter
requirements. The problem of finding maximum s-clubs is known
to be NP-hard for any fixed s P 2 (Balasundaram et al., 2005).

Another absolute clique relaxation model using vertex connec-
tivity is a k-block (Pattillo, Youssef, et al., 2013), which is defined
as a subset S # V such that the subgraph G½S� induced by S in G
has vertex connectivity of at least k, i.e., jðG½S�ÞP k. In contrast to
the computationally hard clique relaxation model above, finding a
maximum 1-block is a polynomially solvable problem, as it corre-
sponds to finding the largest connected component of a graph. Sim-
ilarly, maximum 2-connected and 3-connected components can be
found in OðjV j þ jEjÞ time (Kammer & Täubig, 2005); furthermore,
for any fixed k > 3, finding maximum k-connected components
can be performed in Oð2kjV j3Þ time (Pattillo, Youssef, et al., 2013).

A classical example of a relative (edge-based) clique relaxation
model is a c-quasi-clique defined as a subset S # V such that the
subgraph G½S� induced by S in G has an edge density of at least c,
i.e., qðG½S�Þ ¼ jðS� SÞ \ Ej= jSj2

� �
P c, where c 2 ½0;1� is a fixed con-

stant parameter (Abello, Resende, & Sudarsky, 2002). Obviously,
c ¼ 1 corresponds to a clique, while 0 6 c < 1 defines subgraphs
with smaller edge densities. The problem of finding maximum
c-quasi-cliques is known to be NP-hard for any fixed c 2 ð0;1�,
see Pattillo, Veremyev, Butenko, and Boginski (2013); Pattillo,
Youssef, et al. (2013); Uno (2010).

The c-quasi-clique is, probably, the most well-known relative
clique relaxation model with a number of important applications
in biological, social, telecommunication and financial areas
(Abello, Pardalos, & Resende, 1999; Abello et al., 2002; Matsuda,
Ishihara, & Hashimoto, 1999; Mahdavi Pajouh, Miao, &
Balasundaram, 2014; Uno, 2010). For example, in graph-theoretical
models that are built upon some real-life (e.g., experimental) data,
measurement errors and noisy observations often result in missing
‘‘links’’ (i.e., edges). Using cliques for capturing and representing
dense clusters of closely related (either through cohesiveness or
‘‘tightness’’) functional elements within such networked systems
can be impractical and too idealistic since large cliques rarely occur
in natural systems. Consequently, techniques based on c-quasi-
clique models can be applied to address such issues. However,
Pattillo, Youssef, et al., 2013 pointed out that other relative clique
relaxations ideas should also be studied. Specifically, the concept of
relative vertex connectivity was identified as an interesting
research direction that is worth exploring. In this paper, we further
investigate this issue by using the following definition of a clique
relaxation model:

Definition 1 (c-relative-vertex-connected subgraph). Given a graph
G ¼ ðV ; EÞ and a fixed parameter c 2 ½0;1�, a subgraph G½S�; S # V , is
called c-relative-vertex-connected (or relative c-vertex-connected)

if the minimum number of vertices, whose removal disconnects
G½S� (or results in a trivial subgraph with exactly one vertex), is at
least cðjSj � 1Þ.

Parameter c can be viewed as the minimum fraction, or percent-
age, of vertices that need to be removed (‘‘destroyed’’) in order to
disconnect G½S� or obtain a subgraph with exactly one vertex. Note
that if S is a clique in G, then G½S� has maximum possible vertex
connectivity, i.e., jðG½S�Þ ¼ jSj � 1. Conversely, c ¼ 1 implies that
S is a clique in G.

One important observation is that any c-relative-vertex-
connected subgraph is also a c-quasi-clique; thus, desirable
properties of c-quasi-cliques (i.e., edge-density) are preserved in
c-relative-vertex-connected subgraphs. Indeed, the degree of any
vertex in G½S� is at least cðjSj � 1Þ; otherwise, if there exists a vertex
with a smaller degree, then deletion of all its neighbors results in a
disconnected vertex, which violates the definition of a c-relative-
vertex-connected subgraph. Therefore, the number of edges in
G½S� is at least cðjSj � 1Þ � jSj=2 implying that G½S� is also a c-quasi-
clique. However, there exist c-quasi-cliques that do not induce
c-relative-vertex-connected subgraphs. In particular, a c-quasi-
clique may be a disconnected graph, which is often mentioned as
the key disadvantage of this relative clique relaxation model.

In this paper we consider the problem of finding a maximum (in
terms of cardinality jSj; S # V) subgraph G½S� that is c-relative-ver-
tex-connected. We refer to the decision version of this problem
as the c-RELATIVE-VERTEX-CONNECTED subgraph problem. In
Section 2.1 we show for any fixed c 2 ð0;1� the problem remains
NP-complete (and its optimization version is NP-hard). Note that
c ¼ 0 corresponds to a polynomially solvable case as any graph G
is 0-relative-vertex-connected, while c ¼ 1 reduces to the classical
maximum clique problem.

Next, we further generalize the concept of c-relative-vertex-
connectivity with the following1:

Definition 2 (f-vertex-connected subgraph). Given a graph
G ¼ ðV ; EÞ and a function f ð�Þ such that f : Z>0 ! Rþ, a subgraph
G½S�; S # V , is called f-vertex-connected if the minimum number of
vertices, whose removal disconnects G½S� (or results in a trivial
graph with exactly one vertex) is at least f ðjSjÞ.

For a fixed f ð�Þ, define the decision version of the f-VERTEX-
CONNECTED subgraph problem as follows: given graph G ¼ ðV ; EÞ
and positive integer k, the question is whether G contains an
f-vertex-connected subgraph of size at least k. The optimization
version of the f-VERTEX-CONNECTED subgraph problem consists
of finding a maximum (in terms of cardinality, jSj) f-vertex-
connected subgraph G½S�; S # V .

First, observe that f ðjSjÞ ¼ jSj � 1 corresponds to the CLIQUE
problem, while f ðjSjÞ ¼ c jSj � 1ð Þ; c 2 ð0;1�, reduces to the c-RELA-
TIVE-VERTEX-CONNECTED subgraph problem (see Definition 1).
Similarly, if f ðjSjÞ ¼ k, where k is a fixed positive integer, then the
problem corresponds to finding a maximum k-block, e.g., the larg-
est connected component for k ¼ 1. The proposed generalization
encompasses another known vertex-connectivity-based model,
namely, s-bundle (Pattillo, Youssef, et al., 2013), which is defined
as S # V that induces a subgraph with vertex connectivity at least
jSj � s, i.e., jðG½S�ÞP jSj � s, where s is a fixed positive integer.
Any 1-bundle is a clique and an s-bundle is also an f-vertex-
connected subgraph for f ðjSjÞ ¼ jSj � s. It is known that finding a
maximum s-bundle is also NP-hard (Pattillo, Youssef, et al., 2013).

The discussion above highlights the fact that identifying
maximum subgraphs remains a difficult combinatorial
optimization problem in general graphs as long as the required
cohesiveness property is relatively strict (e.g., clique, s-bundle,

1 We use Z>0 to denote the set of all strictly positive integers.
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