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a b s t r a c t

Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used
to solve two-stage stochastic programming problems: the aggregate and the disaggregate version. In this
study we report our experiments with a special convex programming method applied to the aggregate
master problem. The convex programming method is of the type that uses an oracle with on-demand
accuracy. We use a special form which, when applied to two-stage stochastic programming problems,
is shown to integrate the advantages of the traditional variants while avoiding their disadvantages. On
a set of 105 test problems, we compare and analyze parallel implementations of regularized and unreg-
ularized versions of the algorithms. The results indicate that solution times are significantly shortened by
applying the concept of on-demand accuracy.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Decomposition is an effective and time-honoured means of
handling two-stage stochastic programming problems. It can be
interpreted as a cutting-plane scheme applied to the first-stage
variables. Traditionally, there are two approaches: one can use a
disaggregate or an aggregate model. A major drawback of the
aggregate model is that an aggregate master problem cannot
contain all the information obtained by the solution of the sec-
ond-stage problems. The disaggregate master problem, on the
other hand, may grow excessively. It is not easy to find a balance
between the effort spent in solving the master problem on the
one hand, and the second-stage problems on the other hand. The
computational results of Wolf and Koberstein (2013) give insights
into this question.

In this study we report our experiments with a special inexact
convex programming method applied to the aggregate master
problem of the two-stage stochastic programming decomposition
scheme. The convex programming method is of the type that uses
an oracle with on-demand accuracy, a concept proposed by
Oliveira and Sagastizábal (2014). We are going to use a special
form which, when applied to two-stage stochastic programming

problems, integrates the advantages of the aggregate and the
disaggregate models. This latter feature is discussed in Fábián
(2012). We also examine the on-demand accuracy idea in an
un-regularized context, which results a pure cutting-plane method
in contrast to the level bundle methods treated in Oliveira and
Sagastizábal (2014).

The paper is organized as follows. In Section 1.1 we outline the
on-demand accuracy approach to convex programming, and pres-
ent an algorithmic sketch of the partly inexact level method. In
Section 2 we overview two-stage stochastic programming models
and methods. Specifically, in Section 2.1 we sketch a decomposi-
tion method for two-stage problems based on the partly inexact
level method. Section 3 discusses implementation issues. Our com-
putational results are reported in Section 4, and conclusions are
drawn in Section 5.

1.1. Convex programming: applying oracles of on-demand accuracy

Let us consider the problem

min uðxÞ
such that x 2 X;

where u : IRn ! IR is a convex function, and X � IRn is a convex
closed bounded polyhedron. We assume that u is Lipschitz contin-
uous over X with the constant K.
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Oliveira and Sagastizábal (2014) developed special regulariza-
tion methods for unconstrained convex optimization, namely, bun-
dle level methods that use oracles with on-demand accuracy. The
methods work with approximate function data, which is especially
useful in solving stochastic problems. Approximate function values
and subgradients are provided by an oracle with on-demand accu-
racy. The accuracy of the oracle is regulated by two parameters:
the first is a descent target, and the second is a tolerance. If the
estimated function value reaches the descent target, then the pre-
scribed tolerance is observed. Otherwise the oracle just detects
that the target cannot be met, and returns rough estimations of
the function data, disregarding the prescribed tolerance. The
method includes the ideas of Lemaréchal, Nemirovskii, and
Nesterov (1995), Kiwiel (1995) and Fábián (2000); and integrates
the level-type and the proximal approach.

In this paper we are going to use a special method that falls into
the ‘partly inexact’ category according to Oliveira and Sagastizábal,
and applies only the level regularization of Lemaréchal et al.
(1995). The method is discussed in detail in Fábián (2012).

In the following description, �/ denotes the best function value
known, and / is a lower estimate of the optimum. The gap
D ¼ �/� / measures the quality of the current approximation.
The descent target is �/� d, where the tolarence d is regulated by
the current gap. If the descent target is reached, then the oracle
returns an exact subgradient. Otherwise the oracle just detects that
the target cannot be met, and returns rough estimations of the
function data. Iterations where the descent target is reached will
be called substantial.

Algorithm 1. A partly inexact level method.

In step 1.3, above, the projection of xi onto Xi means finding the
point in Xi nearest to xi. It means solving a convex quadratic pro-
gramming problem.

Convergence of Algorithm 1 follows from Theorem 3.9 in
Oliveira and Sagastizábal (2014). It yields the following theoretical
estimate: to obtain D < �, it suffices to perform c V=�ð Þ2 iterations,
where the constants c and V depend on parameter settings, and
problem characteristics, respectively.

Remark 2. Concerning the practical efficiency of the (exact) level
method of Lemaréchal et al. (1995), in Nemirovski (2005) (Chapter
5.3.2) observes the following experimental fact. When solving a
problem of dimension n with accuracy �, the level method makes
no more than n lnðV=�Þ iterations, where V is a problem-dependent
constant.

This observation was confirmed by the experiments reported in
Fábián and Sz}oke (2007) and Zverovich, Fábián, Ellison, and Mitra
(2012), where the level method was applied in decomposition
schemes for the solution of two-stage stochastic programming
problems.

Following Lemaréchal et al. (1995), we define critical iterations
for Algorithm 1. Let us consider a maximal sequence of iterations
such that D1 P D2 P � � �P Ds P ð1� kÞD1 holds. Maximality of
this sequence means that ð1� kÞD1 > Dsþ1. Then xs ! xsþ1 will be
labeled critical. The above construction is repeated starting from
the index s. Thus the iterations are grouped into sequences, and
the sequences are separated with critical iterations.

There is an analogy between the critical iterations of level-type
methods, and the serious steps of traditional bundle methods. In
this paper we use the former terminology which we feel more pre-
cise in the present setting.

2. Two-stage stochastic programming models and methods

First we present the notation with a brief overview of the mod-
els. The first-stage decision is represented by the vector x 2 X, the
feasible domain being defined by a set of linear inequalities. We
assume that the feasible domain is a non-empty convex bounded
polyhedron, and that there are S possible outcomes (scenarios) of
the random event, the s th outcome occurring with probability ps.

Suppose the first-stage decision has been made with the result
x, and the s th scenario has realized. The second-stage decision y is
computed by solving the second-stage problem or recourse problem
that we denote by RsðxÞ. This is a linear programming problem
whose dual is DsðxÞ:

RsðxÞ

min qT
s y

such that
TsxþWsy ¼ hs;

y P 0;

���������
DsðxÞ

max zTðhs � TsxÞ
such that
WT

s z 6 qs;

z is a real� valued vector:
ð1Þ

In the above formulae, qs; hs are given vectors and Ts; Ws are given
matrices, with compatible sizes. We assume that RsðxÞ is feasible
for any x 2 X and s ¼ 1; . . . ; S. Moreover we assume that DsðxÞ is fea-
sible for any s ¼ 1; . . . ; S. Let qsðxÞ denote the common optimum.
This is a polyhedral convex function called the recourse function.

The customary formulation of the first-stage problem is

min cT xþ
XS

s¼1

ps qsðxÞ such that x 2 X: ð2Þ

The expectation part of the objective, qðxÞ ¼
PS

s¼1ps qsðxÞ, is called
the expected recourse function.

Since the two-stage stochastic programming problem (2)– (1)
features discrete finite distributions and linear functions, it can
be formulated as a single linear programming problem that we call
the equivalent linear programming problem.

Given a finite subset eUs of the feasible domain of DsðxÞ, the
function

~qsðxÞ :¼ max
us2eU s

uT
s ðhs � TsxÞ ðx 2 XÞ ð3Þ

1.0 Parameter setting.
Set the stopping tolerance � > 0:
Set the level parameter k ð0 < k < 1Þ:Þ
Set the tolerance regulating parameter c such that 0 < c < ð1� kÞ2:

1.1 Bundle initialization.
Let i ¼ 1 (iteration counter).
Find a starting point x1 2 X:
Let l1ðxÞ be a linear support function to uðxÞ at x1

Let d1 ¼ 0 (meaning that l1 is an exact support function).
1.2 Near-optimality check.

Compute �/i ¼ min16j6i uðxjÞ:
Let /i ¼minx2X uiðxÞ, where uiðxÞ ¼ max16j6i ljðxÞ is the current
model function.
Let Di ¼ �/i � /i . If Di < � then near-optimal solution found, stop.

1.3 Finding a new iterate.
Let xiþ1 be the projection of xi onto Xi ¼ x 2 X j uiðxÞ 6 /i þ kDi

n o
:

1.4 Bundle update.
Let diþ1 ¼ cDi.
Let liþ1ðxÞ be a linear function such that liþ1ðxÞ 6 uðxÞ ðx 2 XÞ;
krliþ1k 6 K; and

either liþ1ðxiþ1ÞP �/i � diþ1 ðdescent target could not be
reachedÞ,
or liþ1ðxiþ1Þ ¼ uðxiþ1Þ ðdescent target has been reachedÞ.
Increment i, and repeat from step 1.2.
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