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a b s t r a c t

Suppose customers need to choose when to arrive to a congested queue with some desired service at the
end, provided by a single server that operates only during a certain time interval. We study a model
where the customers incur not only congestion (waiting) costs but also penalties for their index of arrival.
Arriving before other customers is desirable when the value of service decreases with every admitted
customer. This may be the case for example when arriving at a concert or a bus with unmarked seats
or going to lunch in a busy cafeteria. We provide game theoretic analysis of such queueing systems with
a given number of customers, specifically we characterize the arrival process which constitutes a sym-
metric Nash equilibrium.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

When customers are faced with the decision of when to arrive to
a queueing system with some desired service at the end, the first
issue to consider is avoiding congestion. This disutility is typically
modelled as a waiting time cost. Such a model was first considered
by Glazer and Hassin (1983). They assumed that the number of cus-
tomers arriving to the queue is a Poisson random variable, which as
it turns out makes the analysis easier than the deterministic case, or
any other distribution. However, customers may also be interested
in being served at an early time. Such an example is driving home
from work, where commuters wish to avoid traffic but are not will-
ing to stay at work until midnight in order to achieve this. This type
of disutility has been modelled as a tardiness cost that increases the
later one is admitted into service. Some recent research has been
carried out on this model by Haviv (2013) and by Juneja and
Shimkin (2013). The first considered a Poisson number of customers
and studied the equilibrium properties when limiting the allowed
arrival period. The latter considered a general number of customers
and focused on a rigorous characterization of the Nash equilibrium,
and the proof of convergence to a fluid limit. Both also presented
fluid approximation models which are technically less cumber-
some, and often provide insight on the discrete stochastic case.

In many queueing scenarios customers are not actually worried
about tardiness, but rather about the number of customers who
arrived ahead of them. This is the case in a concert or flight with
unmarked seats, when there is no actual penalty for tardiness unless

other customers have arrived and taken hold of the better seats.
Equivalently, one can consider situations where the actual value
of the service deteriorates with every service completion, for exam-
ple a repair machine which depreciates with every use. Other exam-
ples can be found in Myrick Freeman and Haveman (1977) who find
an optimal toll for the use of a facility in which the demand is a
decreasing function of the aggregate level of facility use, and in
Cicchetti and Kerry Smith (1973) who model the demand for wilder-
ness recreation using a congestion model that users suffer disutility
because of recreation of other users in the same area, and also pro-
vide empirical support for the model. This brings us to the focus of
this work, which is to present a model where one’s cost is not nec-
essarily time based, but rather dependent on the number of prior
arrivals. If this is the only disutility assumed in the model, then obvi-
ously all customers arrive as early as possible. However, if there are
also waiting costs, customers may improve their utility by not arriv-
ing in close proximity to others, which leads to a more interesting
analysis of their strategic behaviour.

In the remainder of this section we introduce the model and
review some related literature. Our analysis commences in Sec-
tion 2 by illustrating an example of a two customer game, and
comparing it to the known results for the tardiness model. We
show that the support of the symmetric equilibrium arrival distri-
bution is infinite if there is no closing time for the server, as
opposed to the finite support obtained in the tardiness model. In
particular, the equilibrium distribution is uniform prior to the
opening time, and exponential after it. We further show how the
equilibrium is adjusted if early birds are not allowed, and when
the server has a closing time. All solutions for the two customer
game are explicitly derived. In Section 3 we consider a general
model with any number of customers. The explicit solution is not
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tractable for the general model, but we characterize the equilib-
rium properties and dynamics, accompanied by a numerical tech-
nique to compute it. We also provide an analysis of the tail
behaviour of the arrival distribution, and prove that it is exponen-
tial. Numerical analysis also suggests that the tail of the arrival
hazard rate equals exactly to the exponential rate found in the
two customer case, regardless of the population size. We then
examine how an immediate generalization can be made to a model
with both order and tardiness costs. We further provide bounds on
the cost incurred by any single customer in equilibrium, in the gen-
eral setting. In Section 4 we present the symmetric equilibrium for
a random number of customers, which follows a Poisson distribu-
tion. In Section 5 we briefly discuss the social optimization prob-
lem and explain how the existing literature relates to the model
we have presented. Finally, in Section 6 we summarize the results
and discuss possible extensions and future work.

Remark. Much of the ‘‘essence’’ of the model is captured in the
two-customer analysis of Section 2. Section 3 is a more technical
generalization. The main results are stated in Theorems 3.1, 3.2
and 3.3, and numerical examples for the general model are
presented in subSection 3.4.

1.1. Model

Suppose that N þ 1 customers wish to obtain service. We
assume that a single server provides the service according to a First
Come First Served regime, and that service times are independent
and exponentially distributed with rate l. If multiple customers
arrive at exactly the same time, then they are admitted in a uni-
formly randomized order. The customers incur a delay cost of a
per unit of time, a tardiness cost of b per unit of time until their
admittance into service and an index of arrival cost c for every cus-
tomer that has arrived before them. We denote the closing time by
T > 0, where T ¼ 1means there is no closing time. For most of this
work we assume that b ¼ 0, and analyse the model with only wait-
ing and order costs. Where possible, we also consider b > 0 for the
sake of comparison and generalization.

In Juneja and Shimkin (2013), the equilibrium for a general N
customer was characterized under the assumption that customers
are limited to arrival distributions F such that: ’’For each F, the cor-
responding support can locally (i.e., on any finite interval) be repre-
sented as a finite union of closed intervals and points’’. They proved
that under this assumption, the equilibrium arrival profile is
unique and symmetric. We focus here only on distributions that
satisfy this assumption.

The symmetric equilibrium mixed strategy is defined by a cdf
denoted by FðtÞ for all t 2 R. We also denote the density function
f ðtÞ ¼ F 0ðtÞ for all t such that FðtÞ is continuous and differentiable.
We seek a cdf F such that if the other N customers arrive according
to F, then the last customer is indifferent between arriving at all
points of the support of F, and does not prefer any point outside
of the support. The expected cost of arriving at time t 2 R is:

cFðtÞ ¼ �at1ft<0g þ
aþ b

l
EQFðtÞ þ bt1ftP0g þ cEAFðtÞ; ð1:1Þ

where QFðtÞ and AFðtÞ are the queue size and the arrival process at
time t, respectively, when N customers are arriving independently
according to F. The value of the arrival process at time t, AFðtÞ, is
in fact the index of arrival of the last customer to arrive up until
time t. In the following sections we will simply denote these pro-
cesses by QðtÞ and AðtÞ, although their distribution is always deter-
mined by F. Note that EAFðtÞ ¼ NFðtÞ, but the expected queue size
depends on both arrivals and departures, and typically does not
have an explicit form as a function of F.

Remark. The majority of our analysis assumes that the size of N is
common knowledge. It is important to note however, that all results
may be generalized to any prior distribution on N in a fairly
straightforward manner. The special case of the Poisson distribution
has simplifying properties which we shall elaborate on in Section 4.

1.2. Preliminary analysis of the index cost model

Suppose b ¼ 0 and a; c > 0, i.e. customers only incur waiting
and index costs. This special case of the model has several unique
equilibrium properties which will be used throughout our analysis.
We state these properties in the following two lemmata and their
subsequent corollary.

The cost function in (1.1) can now be rewritten:

cðtÞ ¼ �at1ft<0g þ
a
l

EQðtÞ þ cEAðtÞ: ð1:2Þ

Lemma 1.1. There exists no symmetric equilibrium arrival profile
such that for some finite time tb, all customers have arrived with
probability one; FðtbÞ ¼ 1. Furthermore, the expected cost in equilib-
rium is at most c.

Proof. We assume that there exists such an equilibrium arrival
profile, and show that this leads to a contradiction. Any customer
can achieve the cost cþ � for any � > 0 by arriving at a very large
t > tb. This is because the probability that the server is still busy
approaches zero when t !1. Therefore, the expected cost,
denoted by ce, in this equilibrium is at most c. This cost is constant
on all of the support, specifically at time tb:

ce ¼ cðtbÞ ¼
a
lEQðtÞ þ c > c; ð1:3Þ

thus contradicting the previous argument, that ce 6 c. h

Lemma 1.2. There can be no holes in a symmetric equilibrium arrival
profile. In other words, there exists no time t such that FðtÞ > Fðt�Þ,
where Fðt�Þ ¼ lims"t FðsÞ is the limit from the left of the cdf at point
t (the point of upward discontinuity).

Proof. Assume there exists a time t such that FðtÞ > Fðt�Þ. The left
limit from the left of the cost function (1.2) at t is:

cðt�Þ ¼ �at1ft<0g þ
a
l

EQðt�Þ þ cFðt�Þ:

The expected queue size can only have upward jumps, i.e.
EQðs�Þ 6 EQðsÞ for any time s (see for example Lemma 2 in Juneja
& Shimkin (2013)). Therefore, we can conclude that cðt�Þ < cðtÞ,
which contradicts the equilibrium assumption. h

Corollary 1.3. The support of the equilibrium distribution F can be
represented as an interval ½ta;1Þ, for some finite and negative ta.

Note that ta > �1 because limt!�1 cðtÞ ¼ 1 for any F, and in
Lemma 1.1 we established that the equilibrium cost is at most c.

1.3. Related literature

In 1969 Vickrey published his seminal paper ‘‘Congestion Theory
and Transport Investment’’ (Vickrey, 1969), which presented a fluid
model for congestion dynamics. In particular, equilibrium arrival
dynamics where characterized for a bottleneck model. This model
was studied and developed in various directions in the following
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