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a b s t r a c t

Decision makers benefit from the utilization of decision-support models in several applications. Obtaining
managerial insights is essential to better inform the decision-process. This work offers an in-depth
investigation into the structural properties of decision-support models. We show that the input–output
mapping in influence diagrams, decision trees and decision networks is piecewise multilinear. The
conditions under which sensitivity information cannot be extracted through differentiation are examined
in detail. By complementing high-order derivatives with finite change sensitivity indices, we obtain a
systematic approach that allows analysts to gain a wide range of managerial insights. A well-known case
study in the medical sector illustrates the findings.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Decision trees, influence diagrams, Bayesian networks and
event trees support the solution of decision analysis problems in
several applications. Their use is nowadays facilitated by a number
of software programs (see Bielza, Gomez, & Shenoy, 2011; Jensen &
Nielsen, 2007).1 Computer implementation enables analysts to
develop sophisticated codes that incorporate a variety of aspects of
the problems under investigation (Dillon, Paté-Cornell, & Guikema,
2003). However, model complexity exposes analysts and decision-
makers to the risk of a partial understanding of the model input–out-
put response. Then, deriving insights about the structure of the
model becomes essential to make robust conclusions and inferences.

Researchers have developed methods for exploring the informa-
tional content of decision-support models. For Bayesian networks
several of the most recent findings rest on the fundamental result
that the input-mapping in Bayesian networks is a multilinear poly-
nomial (Castillo, Gutiérrez, & Hadi, 1996, 1997). For instance, mul-
tilinearity is crucial for arithmetic and decision circuits
(Bhattacharjya & Shachter, 2012; Darwiche, 2003). However, there
are unique challenges in sensitivity analysis for influence diagrams due
to the non-linearities created by maximization operations for making
decisions (Bhattacharjya & Shachter, 2010, p. 1). Indeed, this issue is

transversal to all decision-support models that include a maximi-
zation (or minimization) operator. The maximization operation
induces piecewise-definiteness and impairs differentiation. Thus,
properties of Bayesian networks cannot be transferred directly to
models such as influence diagrams, decision trees and decision cir-
cuits. The difficulties associated with differentiation then raise
broader issues concerning the methodology for deriving manage-
rial insights from decision-support models.

In this work, we conduct a systematic investigation into the
mathematical properties of decision-support models. We show
that the decision-theoretical principles underlying their construc-
tion (Savage, 1954) lead to a piecewise defined input–output map-
ping. Each piece corresponds to an available strategy and is
multilinear in probabilities and utilities. We call the mapping a
decision-network polynomial.

Non-differentiability occurs at those values of the model inputs
(probabilities/utilities) for which the decision-maker is indifferent
among alternative strategies. Using the terminology of Howard
(1968) (see also Bhattacharjya & Shachter, 2010),2 this result
suggests that differentiation finds its natural application in an
open-loop analysis, i.e., when the preferred strategy (or any other
strategy) is under scrutiny. In a closed-loop analysis differentiation
might not be possible. We then employ sensitivity measures based
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1 See also the associated website http://bndg.cs.aau.dk/ for a list of software
programs.

2 Drawing from the systems analysis literature, Howard, 1968 refers to varying a
parameter and computing the certain equivalent at a fixed strategy as open loop analysis;
when the strategy is allowed to vary by re-evaluating the decision situation, it is closed
loop analysis (Bhattacharjya & Shachter, 2010, p. 3).
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on an orthogonal decomposition via finite difference operators
(Borgonovo, 2010), that do not require differentiability. These finite
change sensitivity indices allow us to obtain a clear understanding of
the model response, by apportioning the change in expected utility
to the individual effects and interactions among the model inputs.

The next step is the analysis of the model structure when con-
sequences are monetary and certainty equivalents are the output
of interest. Findings show that the input–output mapping remains
piecewise-defined but each piece is composite multilinear. We link
high order derivatives of certainty equivalents polynomials analyt-
ically to the derivatives of the corresponding decision-network
polynomials. Finite change sensitivity indices acquire a direct
interpretation as the monetary gain (loss) associated with the
model input variations.

The well known case-study of Felli and Hazen (2004) helps us
illustrating how the approach can be used for: (i) understanding
direction of change, (ii) quantifying the relevance of interactions;
and (iii) identifying the model inputs on which to focus managerial
attention during implementation (Eschenbach, 1992, pp. 40-41).

The remainder of the paper is organized as follows. Section 2
offers a literature review. Section 3 presents decision-network
polynomials. Section 4 investigates the link between indifference
and differentiation. Section 5 discusses the presence of interactions
and specializes finite change sensitivity indices to the case of deci-
sion-network polynomials. Section 6 discusses results for certainty
equivalents. Section 7 illustrates the derivation of decision-making
insights through a case study in the medical sector. Section 8 offers
conclusions. All proofs are in Appendix A.

2. Review and taxonomy

This section offers a concise overview of relevant literature on
decision support models and their sensitivity analysis. For a broad
overview of these models we refer to Bielza et al. (2011).

Bayesian networks are among the most widely used decision-
support models for the factorization of probability distributions.
Their applications range from reliability analysis to genetics
(Darwiche, 2010; Jensen & Nielsen, 2007). Technically, a Bayesian
network is a directed acyclic graph G ¼ ðN;AÞ, where N and A are
the sets of associated nodes and arcs. N contains chance nodes.
Each chance node represents a random variable. A contains arcs
or edges, which join pairs of nodes. The lack of an arc signifies
probabilistic independence, while the presence of an arc signifies
a possible probabilistic dependence. A conditional probability table
(CPT) is assigned to each random variable. Algorithms for evaluat-
ing Bayesian networks have been widely studied. We refer to
Jensen and Nielsen (2007) and Darwiche (2010) for thorough
overviews.

A second class of decision-support models for the factorization
of probability distributions are event trees. Event trees are often
applied in reliability analysis in conjunctions with fault trees.
Papazoglou (1998) offers a rigorous mathematical formalization.
Marsh and Bearfiled (2008) show that there is always a unique
Bayesian network corresponding to an event tree, but there might
be multiple event trees corresponding to a Bayesian network. The
event tree is unique once the Markovian assumptions of a Bayesian
network are satisfied (Darwiche, 2010).

Influence diagrams are Bayesian networks augmented with deci-
sion-nodes and value nodes, where value nodes have no descendant
(Nielsen & Jensen, 2003, p. 223). Thus, the set of nodes is now
partitioned into value, chance and decision nodes (Shachter, 1986,
p. 874). Value (or utility) nodes conclude the diagram and display
the decision-maker’s utility (or payoff) over consequences. Arcs
evidence the flow of information, besides probabilistic dependence
Shachter (1986, p. 417). As far as chance nodes are concerned, the

corresponding random variables can be discrete (Howard &
Matheson, 1981; Shachter, 1986, 1988) or continuous (Cobb &
Shenoy, 2008; Shachter & Kenley, 1989). Influence diagrams fully
retain the probabilistic meaning of Bayesian networks so that the
various well established algorithms for Bayesian net evaluation can
be used in influence diagram evaluation (Qi & Poole, 1995, p. 501).
Bhattacharjya and Shachter (2010) provide a thorough review on
solution methods for influence diagrams.

The compact representation offered by influence diagrams does
not allow us to appreciate the detailed combination of decisions
and outcomes. To reveal them, we need to convert the influence
diagram into the corresponding decision-tree. Under the single
decision-maker and no-forgetting conditions (which we assume
throughout this work) Howard and Matheson (1981), an influence
diagram can be uniquely associated with a decision-tree. At the
graphical level, a decision tree contains decision, chance nodes,
branches and end nodes (or leaves). They display the combinations
of outcomes and alternatives that lead to the end consequences.
Any such combination is called a scenario. The size of decision trees
grows exponentially with the number of nodes, which is one of
their main limitations Bielza and Shenoy (1999).

Sequential decision-diagrams (Covaliu & Oliver, 1995), uncon-
strained influence diagrams (Jensen & Vomlelova, 2002), limited
memory influence diagrams (Lauritzen & Nilsson, 2001), valuation
networks (Shenoy, 1992), sequential valuation networks (Demirer
& Shenoy, 2006) extend the family of decision-support models.

Given the complexity of decision-support models in practical
applications, their sensitivity analysis plays a central role for
extracting managerial insights. For Bayesian networks, we recall
one-way, distance-based and differentiation based sensitivity anal-
ysis. One-way sensitivity analysis is the simplest type of analysis and
it consists of systematically varying one of the network’s parameter
probabilities while keeping all other parameters fixed (van der Gaag,
Renooij, & Coupé, 2007, p. 104). The works of Castillo et al.
(1996, 1997) obtain analytically the sensitivity function, namely
the dependence of the posterior probability of interest on the net-
work parameter under scrutiny. An intrinsic limitation of any one-
way approach is its reliance on the variation of a single parameter.
Chan and Darwiche (2005) extend the robustness question to
simultaneous variations. They introduce a new metric for bound-
ing global belief changes that result from either the perturbation of
local conditional beliefs or the accommodation of soft evidence
(Chan & Darwiche, 2005). Brosnan (2006) relies on Shannon’s
entropy and the Kullback–Leibler divergence for answering the
same questions. As to differentiation, Chan and Darwiche (2004)
discuss the determination of the individual or simultaneous
changes in Bayesian network-parameters that ensure the satisfac-
tion of a query constraint using a differential approach. In Bayesian
networks, partial derivatives can also be obtained by differentiat-
ing sensitivity functions; the result is called sensitivity value in
van der Gaag et al. (2007, p. 104). In Blackmond-Laskey (1995) par-
tial derivatives are used to focus elicitation efforts on the most
important model inputs. Darwiche (2003) and Park and Darwiche
(2004), augment differentiation with probabilistic semantics. They
also introduce numerically efficient ways of obtaining first and
second order derivatives by upwards and downward passes in
arithmetic circuits.

In influence diagrams, the same sensitivity questions can be
asked, but we have two notable differences. The first distinction
is marked by the need to consider decision sensitivity besides value
sensitivity. That is, changing the model inputs does not only modify
the value of the decision-problem, but may cause the decision-
maker to change strategy. Robustness then becomes the problem
of assessing the region in the input parameter space over which
the optimal policy is invariant. The second distinction is marked
by the presence of utilities in influence diagrams, which play the
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