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a b s t r a c t

We consider the ranking of decision alternatives in decision analysis problems under uncertainty, under
very weak assumptions about the type of utility function and information about the probabilities of the
states of nature. Namely, the following two assumptions are required for the suggested method: the util-
ity function is in the class of increasing continuous functions, and the probabilities of the states of nature
are rank-ordered. We develop a simple analytical method for the partial ranking of decision alternatives
under the stated assumptions. This method does not require solving optimization programs and is free of
the rounding errors.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Within the framework of expected utility theory an alternative
x0 is preferred to alternative x00 if the expected utility of x0 is greater
than the expected utility of x00 (see, e.g., Fishburn, 1970). In prac-
tice, however, the utility function may be difficult to assess, and
the probability distribution may not be completely known. In par-
ticular note that the assumption of an additive utility function is a
fairly strong assumption to make (Allais, 1953).

There exists extensive literature that deals with different relax-
ations of the above standard assumptions. For example, the litera-
ture on stochastic dominance (Whitmore and Findlay, 1978; Levy,
2006; Post and Kopa, 2013) generally assumes that the utility func-
tion is unknown and belongs to a certain class of functions, while the
probability distribution on the set of states of nature is known. The
opposite case in which the utility function is known but the informa-
tion about probabilities is incomplete, is considered, for example, in
Fishburn (1964, 1965), Hazen (1986), and Parkan (1994).

A more difficult case arises when both the utility function is not
known exactly (but a class of functions to which it belongs is
specified) and the information about probabilities is incomplete.
Based on this assumption, the ranking of decision alternatives
requires solving nonlinear optimization problems (Weber, 1987;
Moskowitz et al., 1993). Pearman and Kmietowicz (1986) consider
a special case in which the probabilities are described by sets of
linear inequalities, and the utility function is assumed either

monotone or monotone and concave. In both cases the comparison
of decision alternatives leads to the solution of linear programs.
Keppe and Weber (1990) show that the use of so-called P-matrices
reduces the number of linear programs that need to be solved. In
special cases of the latter paper, the solution of linear programs
is not even required.

Methodologically close to the above description are multi-crite-
ria decision problems (under certainty) in which the weights of cri-
teria (coefficients of importance) and/or criteria values for different
alternatives are not known precisely (Podinovski, 2004). In partic-
ular, some methods developed for the former problems are appli-
cable to the (single-criterion) decision problems under
uncertainty considered in this paper. This includes methods devel-
oped for problems with homogeneous criteria – by definition the
latter have a common scale. Examples of such methods that are
based on a further assumption of an additive value function
include analytical approaches of Kirkwood and Sarin (1985) and
Corrizosa et al. (1995). Further examples of methods equally appli-
cable to both types of problem include methods of criteria impor-
tance theory (Podinovski, 1993, 2002) – and these do not assume
the existence of a value function. Note however that not all meth-
ods are transferable between the two types of problem. For exam-
ple, the optimizing method of Eum et al. (2001) is not applicable to
the decision problems considered in our paper.

In our paper we contribute to the literature by considering the
case based on a very weak assumption on the utility function and a
further assumption that the probabilities of the states of nature are
ordered by their value. We develop a simple analytical method that
allows the partial ranking of decision alternatives under the stated
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assumptions. This method does not require the solution of optimi-
zation programs.

The paper is organized as follows. Section 2 introduces the basic
definitions and notation. Section 3 contains the main result of our
paper – a method for pairwise comparison of alternatives. Section 4
presents an illustrative application. The concluding Section 5
summarizes our development. All proofs are given in Appendix A.

2. Basic definitions

We use the following notation:

X – the set of decision alternatives
S = {s1, . . . , sn} – the set of states of nature
g(x,si) – the consequence (pay-off) to the decision maker

defined by alternative x and state si (we may view g is a
function whose domain is X � S and codomain is H – the
latter is the set of all possible consequences)

p = (p1, . . . , pn) – the probability distribution on S: pi is the
probability that si is the true state of nature

u(g(x,si)) – the utility of the consequence g(x,si).

For simplicity, instead of the vector of utilities (u(g(x,s1)), . . . ,
u(g(x,sn)), we use notation u(x) = (u1(x), . . . , un(x)), where
ui(x) = u(g(x,si)).

If both the probability distribution p and utility function u are
known, alternatives are ranked according to their expected utility.
For an alternative x, the latter is defined as

�uðxÞ ¼
Xi¼n

i¼1

piuiðxÞ: ð1Þ

Below we assume that the probability distribution p is not
known exactly. Instead, we assume that the components of vector
p satisfy the following inequalities:

p1 P p2 P � � �P pn > 0: ð2Þ

Let each non-strict inequality in (2) be either a strict inequality or
equality, and let us specifically know which of the two relations is
true. For example, we know that either p1 > p2 or p1 = p2.

Let P
!

denote the set of all vectors p that satisfy the stated ordi-
nal information (2). (We also make the standard assumption that
all pi > 0 and p1 + � � � + pn = 1.)

We further assume that the unknown utility function is of the
class U1 of all increasing continuous functions. Following a
well-established approach (Weber, 1987; Greco et al., 2008),
define the binary relations of non-strict preference R, (strict) pref-
erence P, and indifference I, on the set of all alternatives X as
follows:

x0Rx00 if �uðx0ÞP �uðx00Þ is true for all p 2 P
!

and u 2 U1; ð3Þ
x0Px00 if the relation x0Rx00 is true but x00Rx0 is not true;

x0Ix00 if both relations x0Rx00 and x00Rx0 are true:

3. The main result: comparing the alternatives

Consider the set P
!

of all probability vectors p that satisfy (2).
Let N1 be the set of all states i that have the highest probability
pi of occurrence as stated in (2). (Because in (2) we allow equalities,
there may be more than one state in this set.) Let i1 be the largest i
such that i 2 N1. Let N2 be the set of states that have the second
highest probability p2, and i2 the largest i such that i 2 N2.
Continuing this process, finally let Nq be the set of states i that have
the lowest probability among all states, and let iq be the largest i
such that i 2 Nq.

For example, let

p1 > p2 ¼ p3 > p4: ð4Þ

Then N1 = {1}, i1 = 1, N2 = {2,3}, i2 = 3, N3 = {4}, i3 = 4, and q = 3.
Suppose we want to compare alternatives x0 and x00 as defined in

(3). Define the corresponding vectors of pay-offs

a ¼ ða1; . . . ; anÞ; where ai ¼ gðx0; siÞ; i ¼ 1; . . . ;n;

b ¼ ðb1; . . . ; bnÞ; where bi ¼ gðx00; siÞ; i ¼ 1; . . . ;n:

Furthermore, for any vector c = (c1, . . . , cn), let cj be the vector con-
sisting of the first j components of vector c:

cj ¼ ðc1; . . . ; cjÞ:

Let cj
# ¼ cj

½1�; . . . ; cj
½j�

� �
denote the vector obtained by permuting the

components of vector cj in the non-increasing order:
cj
½1� P � � �P cj

½j�. For example, if c = (1,4,3), then c2 = (1,4) and
c2
# ¼ ð4;1Þ.

Finally, for any two vectors (c1, . . . , cm) and d = (d1, . . . , dm), the
vector inequality c P d is used to denote the set of inequalities
between the corresponding components: c1 P d1, . . . , cm P dm.

The following theorem establishes a constructive method for
the comparison of alternatives x0 and x00 as defined in (3).

Theorem 1. The relation x0Rx00 is true if and only if the following
inequalities are true:

air
# P bir

# ; r ¼ 1; . . . ;q: ð5Þ
Furthermore, if in (5) all non-strict inequalities are satisfied as

equalities, then x0Ix00, otherwise x0Px00.

The proof of Theorem 1 is given in Appendix A.

Remark 1. If all states of nature are equally probable, then q = 1,
i1 = n, and (5) is reduced to the single inequality a; P b;, where
a# ¼ an

# and b# ¼ bn
# . This is equivalent to the result obtained in

Podinovski (1975) stated in terms of multi-criteria problems. In
particular, Podinovski (1975) showed that the corresponding
preference relation R arising in multi-criteria problems could be
regarded as the ordinal formulation of the principle of insufficient
reason for decision making under ignorance (Luce and Raiffa,
1957).

Example 1. Let n = 4 and p satisfy (4). Then i1 = 1, i2 = 3, i3 = 4, and
q = 3. Consider three alternatives x1, x2 and x3 whose values g(x,s)
are shown in Table 1.

To verify relation x1Rx2, we use Theorem 1. For x0 = x1 and x00 = x2

we have:

a1 ¼ 4; a1
# ¼ 4; b1 ¼ 3; b1

# ¼ 3;

a3 ¼ ð4;3;4Þ; a3
# ¼ ð4;4;3Þ; b3 ¼ ð3;2;7Þ; b3

# ¼ ð7;3;2Þ;
a4 ¼ ð4;3;4;8Þ; a4

# ¼ ð8;4;4;3Þ;

b4 ¼ ð3;2;7;2Þ; b4
# ¼ ð7;3;2;2Þ:

Then inequalities (5) take on the form:

a1
½1� P b1

½1�; i:e: 4 P 3;

a3
½1� P b3

½1�; a3
½2� P b3

½2�; a3
½3� P b3

½3�; i:e: 4 P 7; 4 P 3; 3 P 2;

a4
½1� P b4

½1�; a4
½2� P b4

½2�; a4
½3� P b4

½3�; a4
½4� P b4

½4�; i:e: 8 P 7;

4 P 3; 4 P 2; 3 P 2:

Not all of the above inequalities are true and, by Theorem 1, the
relation x1Rx2 does not hold. Similarly, x2Rx1 does not hold. There-
fore, alternatives x1 and x2 are incomparable with respect to R.
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