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a b s t r a c t

In this paper we discuss the multicriteria p-facility median location problem on networks with positive
and negative weights. We assume that the demand is located at the nodes and can be different for each
criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the graph and
the corresponding set of non-dominated objective values. To that end, we first characterize the linearity
domains of the distance functions on the graph and compute the image of each linearity domain in the
objective space. The lower envelope of a transformation of all these images then gives us the set of all
non-dominated points in the objective space and its preimage corresponds to the set of all Pareto-optimal
solutions on the graph. For the bicriteria 2-facility case we present a low order polynomial time algo-
rithm. Also for the general case we propose an efficient algorithm, which is polynomial if the number
of facilities and criteria is fixed.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world applications are concerned with finding an
optimal location for one or more new facilities on a network (road
network, power grid, etc.) minimizing a function of the distances
between these facilities and a given set of existing facilities
(clients, demand points), where the latter typically coincide with
vertices. For a recent book on location theory the reader is referred
to Nickel and Puerto (2005) and references therein. Since the first
seminal paper by Hakimi (1964), an ever growing number of
results have been published in this field.

The majority of research focuses on the minimization of a single
objective function that is increasing with distance. However, in the
process of locating a new facility usually more than one decision
maker is involved. This is due to the fact that often the cost in-
curred with the decision is relatively high. Furthermore, different
decision makers may (or will) have different (conflicting) objec-
tives. In other situations, different scenarios must be compared
due to uncertainty of data or still undecided parameters of the
model. One way to deal with these situations is to apply scenario
analysis. Another way of reflecting uncertainty in the parameters
is to consider different replications of the objective function.
Hence, there exists a large number of real-world problems which

can only be modeled suitably through a multicriteria approach,
especially when locating public facilities.

An additional difficulty is that we are usually dealing with con-
flicting criteria and a single optimal solution does not always exist
(which would be an optimal solution for each of the criteria).
Therefore, an alternative solution concept has to be used. One pos-
sibility is to determine the set of non-dominated solutions. That is,
solutions such that there exists no other solution which is at least
as good for all decision makers and strictly better for at least one of
them. These solutions are often called Pareto-optimal. For an over-
view on multicriteria location problems the reader is referred to
Nickel, Puerto, and Rodríguez-Chía (2005).

In contrast to the practical needs described above, network
location research involving multiple criteria has received little
attention, especially when it comes to multiple facilities. In this pa-
per, we consider the p-facility median location problem with sev-
eral objective functions. Hereby, each objective function is
representing the goal of one decision maker and the aim is to lo-
cate p facilities in order to minimize the total weighted distance
from the clients to their closest facility. The weights assigned to cli-
ents vary from one decision maker to another, yielding different
objective functions. It might even happen that one of the facilities
is desirable for some decision makers and, at the same time, unde-
sirable for others. Undesirable facilities are usually modeled using
negative weights. See Eiselt and Laporte (1995) for more details on
these problems. Before we discuss the literature, we present a
practical example for this model. Suppose we want to locate two
garbage dumps and we have a set of residential and recreational
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areas and a set of industrial sites where garbage has to be collected.
There are two decision makers involved: the ‘‘Business economist’’
who has to keep the costs in check and the ‘‘Politician’’ who is con-
cerned about the nuisance of the garbage dumps and the garbage
trucks on the population. The business economist wants the dumps
to be close to all sites to minimize travel times and costs. To that
end he associates positive weights with the residential and indus-
trial areas that are proportional to the average number of required
garbage collections. In contrast to that, the politician wants to
minimize the nuisance of the garbage dumps and of the trucks
frequenting the garbage dumps for the population. Therefore, he
assigns to each site a second, negative value. The smaller the
weight is, the more likely it is that the residential area is far away
from the dumps and the less likely it is that trucks that are not
bound for these areas are simply passing through them on their
way to the dumps. Formulating this problem in mathematical
terms results in a bi-criteria 2-facility location model.

There are many other applications of multicriteria multifacility
location problems. Bitran and Lawrence (1980) consider the multi-
criteria location of regional service offices in the expanding operat-
ing territories of a large property and liability insurer. These offices
serve as first line administrative centers for sales support and
claims processing. Another application of multiobjective optimiza-
tion in the context of location theory can be found in Johnson
(2001) that discusses a spatial decision making problem for hous-
ing mobility planning. Ehrgott and Rau (1999) present an analysis
of a part of the distribution system of BASF SE, which involves the
construction of warehouses at various locations. The authors eval-
uate 14 different scenarios and each of these scenarios is evaluated
with the minimal cost solution obtained through linear program-
ming and the resulting average delivery time at this particular
solution. For more applications see Schöbel (2005), Carrano, Takah-
ashi, Finseca, and Neto (2007), and Kolokolov and Zaozerskaya
(2013).

Concerning the methodological aspects of multicriteria network
location problems, Hamacher, Labbé, and Nickel (1999) discuss the
network 1-facility problem with median objective functions. They
show that for Pareto-optimal locations on undirected networks no
node dominance result can be proven. Hamacher, Labbé, Nickel,
and Skriver (2002) provide a polynomial time algorithm for the
1-facility problem when the objectives are both weighted median
and anti-median functions. The method is generalized for any
piecewise linear objective function. Zhang and Melachrinoudis
(2001) develop a polynomial algorithm for the 2-criteria 1-facility
network location problem maximizing the minimum weighted
distance from the service facility to the nodes (maximin) and max-
imizing the sum of weighted distances between the service facility
and the nodes (maxisum). Skriver, Andersen, and Holmberg (2004)
introduce two sum objectives and criteria dependent edge lengths
for the 1-facility 2-criteria problem. Nickel and Puerto (2005) solve
the 1-facility problem when all objective functions are ordered
medians. Colebrook and Sicilia (2007a, 2007b) provide polynomial
algorithms for solving the cent-dian 1-facility location problem on
networks with criteria dependent edge lengths and facilities being
attractive or obnoxious.

Concerning the single criterion multifacility location problem
on networks, Kalcsics (2011) derives a finite domination set for
the p-median problem with positive and negative weights. For
the 2-facility case, the author presents an efficient solution proce-
dure using planar arrangements. Based on this approach, Kalcsics,
Nickel, Puerto, and Rodríguez-Chía (2012) solve the 2-facility case
for different equity measures.

Many of the previous papers study the problem on trees as a
particular case of generalized networks. The first work dealing
with several objectives and facilities is provided by Tansel, Francis,
and Lowe (1982) who develop an algorithm for finding the efficient

frontier of the biobjective multifacility minimax location problem
on a tree network. This problem involves as objective functions
the maximum of the weighted distances between specified pairs
of new and existing facilities.

Despite its intrinsic interest as discussed above, to the best of
our knowledge there are no papers discussing the multicriteria
p-facility median location problem on networks and no results
are known until the moment to obtain the set of Pareto-optimal
solutions.

The remainder of this paper is organized as follows. Section 2
introduces the notation and concepts used throughout the paper.
Section 3 presents some properties of the k-criteria p-facility med-
ian problem on networks. Section 4 is devoted to the development
of a polynomial algorithm for the 2-criteria 2-facility version of the
problem. A solution procedure for the general case is proposed in
Section 5. Finally, Section 6 contains some conclusions and possible
extensions of the analyzed problems.

2. Problem description and general concepts

2.1. Problem definition

Let G ¼ ðV ; EÞ be an undirected connected graph with node set
V ¼ fv1; . . . ;vng and edge set E ¼ fe1; . . . ; emg. Each edge e 2 E has
a positive length ‘ðeÞ, and is assumed to be rectifiable. Let AðGÞ de-
note the continuum set of points on edges of G. We denote a point
x 2 e ¼ ½u;v � as a pair x ¼ ðe; tÞ, where t (0 6 t 6 1) gives the
relative distance of x from node u along edge e. For the sake of
readability, we identify AðGÞ with G and AðeÞ with e for e 2 E. Let
k P 1 be the number of criteria of the problem and define
Q ¼ f1; . . . ; kg. Each vertex v i 2 V has a real-valued weight
wq

i 2 R, q 2 Q . Let J ¼ f1; . . . ; pg, where p is the number of facilities
to be located. We denote by X ¼ ðx1; . . . ; xpÞ the vector of locations
of the facilities, where xj 2 G, j 2 J. (Note that in order to allow
co-location, which is quite common in location problems with
negative weights, we have to represent the facility locations using
a vector.) In the remainder, we use the notions location vector and
solution synonymously.

We denote by dðx; yÞ the length of the shortest path connecting
two points x; y 2 G. Let v i 2 V and x ¼ ð½v r; vs�; tÞ 2 G. The distance
from v i to x entering the edge ½v r;v s� through v r (vs) is given as
Dþi ðxÞ ¼ dðv r ; xÞ þ dðv r ;v iÞ (D�i ðxÞ ¼ dðv s; xÞ þ dðv s;v iÞ). Hence, the
length of a shortest path from v i to x is given by
DiðxÞ ¼minfDþi ðxÞ; D�i ðxÞg. As dðvr ; xÞ ¼ t � ‘ðeÞ and dðv s; xÞ
¼ ð1� tÞ � ‘ðeÞ, the functions Dþi ðxÞ and D�i ðxÞ are linear in x and
DiðxÞ is piecewise linear and concave in x, cf. Drezner (1995). The
distance from v i to its closest facility is finally defined as
DiðXÞ ¼minj2J DiðxjÞ ¼minj2JfDþi ðxjÞ;D�i ðxjÞg. In the following, we
call the functions Dþ=�i ðxÞ and DiðXÞ distance functions of node v i.
Moreover, we say that Da

i ðxjÞ, a 2 fþ;�g, is active for X, if
Da

i ðxjÞ ¼ DiðXÞ.
We consider the objective function FðXÞ ¼ ðF1ðXÞ; . . . ; F jQ jðXÞÞ,

where each FqðXÞ, q 2 Q , is a median function defined as:

FqðXÞ ¼
X
i2V

wq
i DiðXÞ:

We assume the usual definition of Pareto-optimality or effi-
ciency (Ehrgott, 2005). That is, a solution X is called efficient or Par-
eto-optimal, if there exists no solution X0 which is at least as good
as X with respect to all objective function values and strictly better
for at least one value, i.e., 9=X 0 : FqðX0Þ 6 FqðXÞ, 8q 2 Q , and
9q 2 Q : FqðX 0Þ < FqðXÞ. If X is Pareto-optimal, FðXÞ 2 Rk will be
called a non-dominated point. If FqðXÞ 6 FqðX0Þ 8q 2 Q and
9q 2 Q : FqðXÞ < FqðX 0Þ we say X dominates X0 in the decision space
and FðXÞ dominates FðX 0Þ in the objective space.
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