
Discrete Optimization

Automatically improving the anytime behaviour of optimisation
algorithms

Manuel López-Ibáñez ⇑, Thomas Stützle
IRIDIA, Université Libre de Bruxelles (ULB), CP 194/6, Av. F. Roosevelt 50, B-1050 Brussels, Belgium

a r t i c l e i n f o

Article history:
Received 16 May 2012
Accepted 17 October 2013
Available online 28 October 2013

Keywords:
Metaheuristics
Anytime algorithms
Automatic configuration
Offline tuning

a b s t r a c t

Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible
independently of the computation time allowed. Designing algorithms with good anytime behaviour is a
difficult task, because performance is often evaluated subjectively, by plotting the trade-off curve
between computation time and solution quality. Yet, the trade-off curve may be modelled also as a set
of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic
configuration tool and the hypervolume measure, which assigns a single quality measure to a nondom-
inated set. This allows us to improve the anytime behaviour of optimisation algorithms by means of auto-
matically finding algorithmic configurations that produce the best nondominated sets. Moreover, the
recently proposed weighted hypervolume measure is used here to incorporate the decision-maker’s pref-
erences into the automatic tuning procedure. We report on the improvements reached when applying the
proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN
Ant System and (ii) the tuning of the anytime behaviour of SCIP, an open-source mixed integer program-
ming solver with more than 200 parameters.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many optimisation algorithms are designed without a specific
termination criterion, and generate a sequence of feasible solutions
that are increasingly better approximations of the optimal solu-
tion. However, the performance of an algorithm is often crucially
determined by the choice of the termination criterion and the
parameters of the algorithm. If the parameter settings of an algo-
rithm result in fast convergence to good solutions, this may pre-
vent the algorithm from adequately exploring the search space to
find better solutions if given ample time. On the other hand,
parameter settings that give higher exploration capabilities may
produce poor results if the termination criterion is too short.
Hence, there is a trade-off between solution quality and the run-
time of the algorithm that can be adjusted by appropriately setting
the parameters of the algorithm.

In many practical scenarios, an optimisation algorithm may be
terminated at an arbitrary time, and, upon termination, the algo-
rithm returns the best solution found since the start of the run.
In such scenarios, the termination criterion is not known in ad-
vance, and, hence, the algorithm should produce as high quality
solutions as possible at any moment of its run time. Algorithms

that show a better trade-off between solution quality and runtime
are said to have a better anytime behaviour (Zilberstein, 1996).

There are two classical views when analysing the anytime
behaviour (Hoos & Stützle, 2005). One view defines a number of
termination criteria and analyses the quality achieved by the algo-
rithm at each termination criterion. In this quality-over-time view,
the anytime behaviour can be analysed as a series of plots of time-
dependent solution quality distributions. A different view defines a
number of target quality values and analyses the time required by
the algorithm to reach each target. In this time-over-quality view,
algorithms are often analysed in terms of a series of qualified run-
time distributions.

In this paper, we consider a third view that does not favour time
over quality or vice versa. Instead, this third view models the per-
formance profile of an algorithm as a nondominated set in a multi-
objective space. An algorithm has better anytime behaviour when
it produces better nondominated sets, where ‘‘better’’ means better
in terms of Pareto optimality. Surprisingly, this third view has re-
ceived little attention (Hoos & Stützle, 2005; Chiarandini, 2005;
den Besten, 2004), despite the important advances in theory and
practice achieved in performance assessment of multi-objective
optimisers in the last decade. Essentially, this model allows us to
apply the same unary quality measures used in multi-objective
optimisation to assign a single numerical value to the anytime
behaviour of an algorithm’s run. In this paper, we use the hypervo-
lume measure as the unary quality measure for this purpose. The
main reason is that the hypervolume is the quality measure with

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.10.043

⇑ Corresponding author. Tel.: +32 (0) 2650 2745.
E-mail addresses: manuel.lopez-ibanez@ulb.ac.be (M. López-Ibáñez), stuetzle@

ulb.ac.be (T. Stützle).

European Journal of Operational Research 235 (2014) 569–582

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.10.043&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.10.043
mailto:manuel.lopez-ibanez@ulb.ac.be
mailto:stuetzle@ ulb.ac.be
mailto:stuetzle@ ulb.ac.be
http://dx.doi.org/10.1016/j.ejor.2013.10.043
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


the highest discriminatory power among the known unary quality
measures (Zitzler, Thiele, Laumanns, Fonseca, & Grunert da
Fonseca, 2003). In addition, recent work has made possible to de-
scribe user preferences in terms of a weighted hypervolume
measure (Auger, Bader, Brockhoff, & Zitzler, 2009), and, hence,
our proposal allows incorporating user preferences when analysing
the anytime behaviour of an algorithm. Moreover, as shown in this
paper, evaluating the anytime behaviour of an algorithm in terms
of the hypervolume allows applying automatic algorithm configu-
ration methods to find parameter settings of an algorithm that
optimise the trade-off between quality and time.

Recent advances in automatic configuration of algorithms (also
called offline parameter tuning) have shown that such methods
can save a significant amount of human effort and improve the
performance of optimisation algorithms, when designing and eval-
uating new algorithms and when tuning existing algorithms to
specific problems (Birattari, 2009; Bartz-Beielstein, 2006; Hutter,
Hoos, Leyton-Brown, & Stützle, 2009; Eiben & Smit, 2011; Hutter,
Hoos, & Leyton-Brown, 2011; Hoos, 2012). Our proposal here is
to combine automatic configuration with the use of the hypervo-
lume as a surrogate measure of anytime behaviour in order to en-
able the automatic configuration of algorithms in terms of anytime
behaviour.

In the scenario described above, where the algorithm does not
know its termination criterion in advance, techniques such as
parameter adaptation are often applied to improve the anytime
behaviour of the algorithm (Eiben, Michalewicz, Schoenauer, &
Smith, 2007; Aine, Kumar, & Chakrabarti, 2009; Stützle et al.,
2012). However, designing such parameter adaptation strategies
is an arduous task, and they usually add new parameters to the
algorithm that need to be tuned. The method proposed in this pa-
per will help algorithm designers to compare and fine-tune such
parameter adaptation strategies to find the settings that improve
the anytime behaviour of the algorithm on the problem at hand.
Indeed, the first case study reported here derives from our own
efforts on designing parameter adaptation strategies for ant colony
optimisation algorithms. This experience motivated us to develop
the method proposed here, since the classical trial-and-error
approach for designing such strategies proved extremely time-
consuming.

The second case study reported here deals with a different sce-
nario, in particular, a general purpose black-box solver (SCIP
(Achterberg, 2009)) with a large number of parameters. The default
parameter settings of such solvers are tuned for solving problem
instances to optimality as fast as possible. However, in some
practical scenarios, users may not want to wait until a problem in-
stance is solved to optimality, and may decide to stop the solver at
an arbitrary time. Using our method for fine-tuning the parameters
of the solver with respect to anytime behaviour, users can improve
the quality of the solutions found when the solver is stopped
before reaching optimality, without knowing in advance the partic-
ular termination criterion.

The outline of the paper is as follows. Section 2 provides a back-
ground on automatic algorithm configuration, summarises the
state of the art and describes the automatic configuration method
(irace) used throughout this paper. Section 3 introduces the two
classical views of the analysis of anytime algorithms and the less-
explored multi-objective view. In Section 4, we describe our pro-
posal in detail. We explain the benefits of using the hypervolume
to evaluate the anytime behaviour of an algorithm in the context
of an automatic configuration method. We discuss the choice of
reference point and how to combine irace with the hypervolume
measure. An additional section summarises related work and high-
lights the differences with our proposed approach. Section 5
describes our first case study, where we apply this proposal to
the design of parameter adaptation strategies for MMAS. Section 6

discusses how our proposal enables a decision maker to incorpo-
rate preferences regarding the anytime behaviour of an algorithm
to the automatic configuration procedure. A second case study is
considered in Section 7, where we tune the anytime behaviour of
SCIP. Finally, Section 8 provides a summary of our results and dis-
cusses possible extensions of the present work.

2. Preliminaries: automatic algorithm configuration

This section is a brief introduction to automatic algorithm con-
figuration. We define the algorithm configuration problem, give an
overview on the state of the art of automatic configuration meth-
ods, and describe irace, the automatic configuration method used
throughout this paper. A more detailed and formal introduction is
available from the literature referenced here and in the extended
version of the paper (López-Ibáñez & Stützle, 2012a).

2.1. The algorithm configuration problem

Most algorithms for computationally hard optimisation prob-
lems have a number of parameters that need to be set. As an exam-
ple, ACO algorithms (Dorigo & Stützle, 2004) often require the user
to specify not only numerical parameters like the evaporation fac-
tor and the number of ants, but also components like the type of
heuristic information and update method. Another example is
mixed-integer programming solvers, such as SCIP (Achterberg,
2009), which often have a large number of configurable parameters
affecting the main algorithm used internally, e.g., selecting among
different branching strategies. The process of designing complex
algorithms from a framework of algorithm components can be
seen as an algorithm configuration problem (KhudaBukhsh, Xu,
Hoos, & Leyton-Brown, 2009; Montes de Oca, Stützle, Birattari, &
Dorigo, 2009; López-Ibáñez & Stützle, 2012c).

Given a parametrised algorithm, where each parameter may
take different values (settings), a configuration of the algorithm
is a unique assignment of values to parameters. When considering
a problem to be solved by this parametrised algorithm, the goal of
automatic configuration is to find the configuration that minimises
a particular cost function over the set of possible instances of the
problem. The cost function assigns a value to each configuration
when applied to a single problem instance. In the case of stochastic
algorithms, this cost measure is a random variable. Since most
algorithms and problems of practical interest are sufficiently com-
plex to preclude an analytical approach, the configuration of such
algorithms follows an experimental approach (Birattari, 2009;
Bartz-Beielstein, 2006).

2.2. Automatic configuration methods

The traditional approach to algorithm configuration consists of
ad hoc experiments testing relatively few configurations. The use
of experimental design techniques (Coy, Golden, Runger, & Wasil,
2001; Adenso-Díaz & Laguna, 2006) began a trend in which the
task of finding the most promising configurations to be tested is
performed automatically. The natural evolution of this trend has
been to tackle algorithm configuration as an optimisation problem
(Nannen & Eiben, 2006; Ansótegui, Sellmann, & Tierney, 2009;
Hutter et al., 2009; Bartz-Beielstein, 2006; Bartz-Beielstein,
Lasarczyk, & Preuss, 2010; Hutter et al., 2011). It is becoming
widely accepted that automatic configuration methods may save
substantial human effort during the empirical analysis and design
of optimisation algorithms, and, at the same time, lead to better
algorithms (Hoos, 2012; Eiben & Smit, 2011; Bartz-Beielstein,
2006; Birattari, 2009).

570 M. López-Ibáñez, T. Stützle / European Journal of Operational Research 235 (2014) 569–582



Download	English	Version:

https://daneshyari.com/en/article/476667

Download	Persian	Version:

https://daneshyari.com/article/476667

Daneshyari.com

https://daneshyari.com/en/article/476667
https://daneshyari.com/article/476667
https://daneshyari.com/

