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a b s t r a c t

A game with precedence constraints is a TU game with restricted cooperation, where the set of feasible
coalitions is a distributive lattice, hence generated by a partial order on the set of players. Its core may be
unbounded, and the bounded core, which is the union of all bounded faces of the core, proves to be a use-
ful solution concept in the framework of games with precedence constraints. Replacing the inequalities
that define the core by equations for a collection of coalitions results in a face of the core. A collection of
coalitions is called normal if its resulting face is bounded. The bounded core is the union of all faces cor-
responding to minimal normal collections. We show that two faces corresponding to distinct normal col-
lections may be distinct. Moreover, we prove that for superadditive games and convex games only
intersecting and nested minimal collection, respectively, are necessary. Finally, it is shown that the faces
corresponding to pairwise distinct nested normal collections may be pairwise distinct, and we provide a
means to generate all such collections.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In cooperative game theory, for a given set of players N, TU
games are functions v : 2N ! R, v(;) = 0, which express for each
nonempty coalition S # N of players the best they can achieve
by cooperation. In the classical setting, every coalition may form
without any restriction, i.e., the domain of v is indeed 2N. In prac-
tice, this assumption is often unrealistic since some coalitions may
not be feasible for various reasons, e.g., players may be political
parties with divergent opinions or restricted communication abil-
ities, or a hierarchy may exist among players and the formation
of coalitions must respect the hierarchy, etc.

Many studies have been done on games defined on specific sub-
domains of 2N, e.g., antimatroids (Algaba, Bilbao, van den Brink, &
Jiménez-Losada, 2004), convex geometries (Bilbao, 1998; Bilbao,
Lebrón, & Jiménez, 1999), distributive lattices (Faigle & Kern,
1992), or other structures (Béal, Rémila, & Solal, 2010; Faigle, Grab-
isch, & Heyne, 2010; Pulido & Sánchez-Soriano, 2006). In this pa-
per, we focus on the case of distributive lattices. To this end, we
assume that there exists some partial order � on N describing
some hierarchy or precedence constraint among players, as in Fai-
gle and Kern (1992). We say that a coalition S is feasible if the coa-
lition contains all its subordinates, i.e., i 2 S implies that any j � i

belongs to S as well. Then by Birkhoff’s theorem, feasible coalitions
form a distributive lattice.

The main problem in cooperative game theory is to define a rea-
sonable solution of the game, that is, supposing that the grand coa-
lition N will form, how to share among its members the total worth
v(N). The core (Gillies, 1959) is the most popular solution concept,
since it ensures stability of the game in the sense that no coalition
has an incentive to deviate from the grand coalition. For classical
TU games, the core is either empty or a convex bounded polyhe-
dron. However, for games whose cooperation is restricted, the
study of the core is much more complex, since it may be un-
bounded or even contain no vertices (see a survey by Grabisch
(2009)). For the case of games with precedence constraints, it is
known that the core is always unbounded or empty but contains
no line (i.e., it has vertices).

Unboundedness of the core induces difficulties in using it as a
solution concept because, on the practical side, one cannot handle
payment vectors that grow beyond any border. Moreover, from the
mathematical point of view, the core is not compact, and this prop-
erty is often required for establishing results. For example, a se-
quence of elements in the core, created by some negotiation
procedure, may not have a convergent subsequence, so that the
procedure does not help to finally select an element of the core.

Certainly there exist many ways of defining a compact subset of
the core, e.g., one may take the convex hull of its vertices. Here, we
choose another solution, called the bounded core (Grabisch & Sud-
hölter, 2012), which has a natural interpretation for games with
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precedence constraints. Indeed, the bounded core is the set of core
elements such that every player takes the maximum of her direct
subordinates, in the sense that any transfer from a subordinate
to her boss would result in a payoff vector outside the core. Also,
from a geometric point of view, the bounded core is the union of
all bounded faces of the core.

Besides, bounded faces of the core have been studied by Grab-
isch (2011) under the name restricted cores. Bounded faces arise
by turning some inequalities x(S) P v(S) of the core into equalities,
so that the resulting face does not contain any extremal ray. From a
game theoretic point of view, these additional equalities can be
seen as binding constraints for certain coalitions, and hence the
arising face is named restricted core. If the collection of coalitions
with a binding constraint does induce boundedness of the resulting
face, it is called a normal collection. In Grabisch (2011), some exam-
ples of normal collections are provided, and their properties are
studied.

The aim of this paper is to investigate the structure of the
bounded core with the help of normal collections. Specifically,
we want to address the following combinatorial problem: The
bounded core is the union of all bounded faces and, hence, it is
the union of restricted cores with respect to all possible normal
collections. However, the number of normal collections is huge,
and we do not know any efficient way to generate them. Hence,
the main question is: How can the bounded core be written as a
union of a minimal number of faces? The second question naturally
follows: How can the corresponding normal collections be
generated?

We provide complete answers to these questions for the case of
convex games and answer the first question in the case of superad-
ditive games as well as for the general case. We establish that for
the general case only minimal (in the size of the collection) normal
collections are necessary and, moreover, each minimal normal col-
lection is necessary in the sense that for each minimal normal col-
lection N , there exists a game such that there is a point in the
bounded face induced by N , which does not belong to any other
bounded face (Proposition 6). In a similar result for superadditive
games, we show that only intersecting minimal normal collections
are needed (Proposition 7).

For convex games Theorem 5 shows that only nested minimal
normal collections are needed. In this case it is proved that gener-
ically all faces that correspond to the nested minimal normal col-
lections are needed in the following sense: For any strictly
convex game the face corresponding to an arbitrary nested mini-
mal normal collection contains an element that is not contained
in a face that corresponds to any other nested minimal normal col-
lection. Finally, we show that nested minimal normal collections
can be generated by a special class of linear extensions of the par-
tial order � on N. Besides, we show a generalization of the well-
known Shapley-Ichiishi theorem for games with precedence
constraints.

The paper is organized as follows. Section 2 establishes the ba-
sic material for the rest of the paper, and it presents the notions of
restricted core, normal collection and bounded core. Section 3
studies the set of normal collections, introduces properties and re-
calls and discusses well-known examples of minimal normal col-
lections. It also shows how nested collections can be obtained by
a closure operator on a certain class of normal collections. Section 4
investigates the general case and the case of superadditive games.
It also generalizes the Bondareva-Shapley theorem (Bondareva,
1963; Shapley, 1971) by suitably generalizing the balancedness
conditions that are equivalent to the nonemptiness of bounded
faces of the core. Section 5 investigates in depth the case of convex
games, showing the fundamental role played by minimal nested
normal collections.

2. Notation, definitions and preliminaries

Let (P, �) be a finite partially ordered set (poset for short), that
is, a finite set P endowed with a reflexive, antisymmetric, and tran-
sitive relation (see, e.g., Davey & Priestley, 1990). We denote by �
the asymmetric part of �. We say that x 2 P covers y 2 P, and we de-
note it by y � � x if y � x and there is no z 2 P such that y � z � x.

We denote by min(P) and max(P), respectively, the set of the
minimal and maximal elements of (P, �). The dual of the poset
(P, �), denoted by (P, �@) (or simply P@), is the set P endowed with
the reverse order, i.e., x � y if and only if y � @x.

Throughout the paper, it is understood that any subset Q of a
poset (P, �) is endowed with� restricted to Q (we do not use a spe-
cial symbol for the restriction).

A chain C is a subset of P such that its elements are pairwise
comparable, i.e., for any two elements x, y 2 C, we have x � y or
y � x, whereas an antichain is a subset of pairwise incomparable
elements of P. A chain C is maximal if no other chain contains it
or, equivalently, if C = {x1, . . ., xq}, with x1 � � x2 � � � � � � � xq and x1 -
2min(P), xq 2max(P). Its length is q � 1. The height of i 2 P, denoted
by h(i), is the length of a longest chain from a minimal element to i.
Elements of same height k form level k, denoted by Lk. Hence, L0 -
= min(P) is the set of all minimal elements, L1 = min(PnL0), L2 -
= min(Pn(L0 [ L1)), etc. The height of N, denoted by h(N), is the
maximum of h(i) taken over all elements of N. Similarly, we define
the depth d(i) of an element i 2 N as its height in the dual poset P@.
We denote by D0 the set of all elements of depth 0, and we have
that D0 = max(P), D1 = max(PnD0), D2 = max(Pn(D0 [ D1)), etc.

A lattice is a poset (L, �), where for each x, y 2 L their supremum
x _ y and infimum x ^ y exist. The lattice is distributive if _, ^ obey
distributivity.

A subset Q # P is a downset of P if x 2 Q and y � x implies y 2 Q.
We denote by OðP;�Þ the set of downsets of (P, �). It is a well-
known fact that ðOðP;�Þ; # Þ is a distributive lattice and every dis-
tributive lattice arises that way (Birkhoff, 1933). We denote by ;x
the downset generated by an element x 2 P, that is,
;x = {y 2 Pjy � x}. Similarly, for any Q # P, ;Q =

S
x2Q ;x.

Let N be a finite set of n players. A set system F on N is a collec-
tion of subsets of N containing N and ;. Any nonempty subset in F

is called a feasible coalition. We define a cooperative TU game with
restricted cooperation (or simply a game) on F as the pair ðF ;vÞ,
with v : F ! R, such that v(;) = 0.

In this paper we focus on a particular case of set systems, intro-
duced by Faigle and Kern (1992) (games with precedence con-
straints). We consider a partial order � on N, which may express
precedence constraints among players, or hierarchical relations. A
coalition S is feasible if whenever i 2 S, all subordinates of i also be-
long to S, i.e., S is a downset of (N, �). In other words, F ¼ OðN;�Þ,
and hence F , partially ordered by inclusion, is a distributive lattice,
where supremum and infimum are, respectively, [, \. In the sequel
we often omit braces for singletons, writing, e.g., 1i instead of 1{i}.

A game ðF ;vÞ with F ¼ OðN;�Þ is convex if

vðS [ TÞ þ vðS \ TÞP vðSÞ þ vðTÞ for all S; T 2 F : ð1Þ

It is superadditive if the above inequalities are valid for disjoint sets
S, T. It is strictly convex if the inequalities (1) are strict for
SnT – ;– TnS.

The following lemma extends a classical result when F ¼ 2N .

Lemma 1. Let F ¼ OðN;�Þ and ðF ;vÞ be a game. Then ðF ;vÞ is
convex if and only if for all i 2 N,

vðP [ iÞ � vðPÞ 6 vðQ [ iÞ � vðQÞ for all P$Q # N n i with P

[ i;Q

2 F ; ð2Þ
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