Accepted Manuscript

Title: Introducing Schottky barrier into electrochemical response: A novel adjusting strategy for designing

electrochemical sensors

Authors: Xingtao Wang, Minggang Zhao, Hui Li, Yawen

Song, Shougang Chen

PII: S0013-4686(17)31592-X

DOI: http://dx.doi.org/doi:10.1016/j.electacta.2017.07.151

Reference: EA 29968

To appear in: Electrochimica Acta

Received date: 13-2-2017 Revised date: 20-6-2017 Accepted date: 25-7-2017

Please cite this article as: Xingtao Wang, Minggang Zhao, Hui Li, Yawen Song, Shougang Chen, Introducing Schottky barrier into electrochemical response: A novel adjusting strategy for designing electrochemical sensors, Electrochimica Actahttp://dx.doi.org/10.1016/j.electacta.2017.07.151

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Introducing Schottky barrier into electrochemical response: A novel adjusting

strategy for designing electrochemical sensors

Xingtao Wang^a, Minggang Zhao^{a,*}, Hui Li^b, Yawen Song^a, Shougang Chen^{a,*}

^aDepartment of Materials Science and Engineering, Ocean University of China,

266100 Qingdao, PR China

^bOptoelectronic Materials and Technologies Engineering Laboratory of Shandong,

Physics Department, Qingdao University of Science and Technology, Qingdao

266100, PR China

*Corresponding Author E-mail: zhaomg@ouc.edu.cn

Abstract

A novel strategy of using Schottky barrier as a controllable tuning factor for

electrochemical detection was proposed. Our results showed that the Schottky barrier

height could be tuned purposely by the charged characteristics of adsorbed molecules

so that the electrochemical response could be controllably enhanced or weakened. The

fabricated 3D Ni/ZnO/CQDs (carbon quantum dots) foam with Schottky interfaces

was successfully employed for selective electrochemical detection of dopamine. It is

an effective approach to overcome the limit of selective detection of targets with

similar redox properties by using electrochemical method. Rational design of

Schottky barrier is promising to develop new-type and more effective electrochemical

sensors.

Keywords: heterstructure, schottky barrier, tuning factor, electrochemical detection

1. Introduction

Electrochemical detection has attracted significant interest because of its fast response,

high sensitivity and low cost [1-3]. However, eliminating the interfering signal of

1

Download English Version:

https://daneshyari.com/en/article/4766791

Download Persian Version:

https://daneshyari.com/article/4766791

<u>Daneshyari.com</u>