Accepted Manuscript

Title: Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes

Authors: Karthik S. Bhat, Sulakshana Shenoy, H.S. Nagaraja, Kishore Sridharan

PII:	S0013-4686(17)31554-2
DOI:	http://dx.doi.org/doi:10.1016/j.electacta.2017.07.137
Reference:	EA 29954
To appear in:	Electrochimica Acta
Received date:	8-2-2017
Revised date:	14-7-2017
Accepted date:	22-7-2017

article Please cite this as: Karthik S.Bhat, Sulakshana Shenoy, H.S.Nagaraja, Kishore Sridharan, Porous cobalt chalcogenide nanostructures high pseudo-capacitor Electrochimica as performance electrodes, Actahttp://dx.doi.org/10.1016/j.electacta.2017.07.137

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes

Karthik S Bhat, Sulakshana Shenoy, H. S. Nagaraja*, Kishore Sridharan*

Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025, India

HighlightsHydrothermal method is employed to synthesize Co(OH)₂ hexagonal nanosheets.

- Co(OH)₂ nanosheets are transformed to CoTe₂ and CoSe₂ via anion-exchange reaction.
- Nanoporous CoTe₂ and CoSe₂ are fabricated as pseudo-capacitor electrodes.
- Specific capacitance at 5 mV s⁻¹ scan rate for $CoTe_2 = 360$ F g⁻¹ and $CoSe_2 = 951$ F g⁻¹.
- Excellent capacitance of CoSe₂ is complimented by its good retention capability.

Graphical Abstract

Abstract

Electrochemical supercapacitor is an essential technology that is pivotal for the development of reliable energy storage devices. Herein, we report the fabrication of supercapacitor electrodes using nanostructured porous cobalt chalcogenide (CoTe₂ and CoSe₂) electrodes, anticipating an enhanced performance owing to their higher contact area with electrolyte and large pore volume enabling shorter diffusion paths for ion exchange. In this regard, we synthesized CoTe₂ and CoSe₂ nanostructures *via* an anion-exchange-reaction

* Corresponding authors

Email: kishore@nitk.edu.in, sridharankishore@gmail.com (Kishore Sridharan) and nagaraja@nitk.edu.in (H. S. Nagaraja)

Download English Version:

https://daneshyari.com/en/article/4766899

Download Persian Version:

https://daneshyari.com/article/4766899

Daneshyari.com