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a b s t r a c t

The computational time required by interior-point methods is often dominated by the solution of linear
systems of equations. An efficient specialized interior-point algorithm for primal block-angular problems
has been used to solve these systems by combining Cholesky factorizations for the block constraints and a
conjugate gradient based on a power series preconditioner for the linking constraints. In some problems
this power series preconditioner resulted to be inefficient on the last interior-point iterations, when the
systems became ill-conditioned. In this work this approach is combined with a splitting preconditioner
based on LU factorization, which works well for the last interior-point iterations. Computational results
are provided for three classes of problems: multicommodity flows (oriented and nonoriented), mini-
mum-distance controlled tabular adjustment for statistical data protection, and the minimum congestion
problem. The results show that, in most cases, the hybrid preconditioner improves the performance and
robustness of the interior-point solver. In particular, for some block-angular problems the solution time is
reduced by a factor of 10.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many important large-scale optimization problems exhibit a
block-angular structure. Applications are found in fields such as
control and planning, network flows, stochastic linear program-
ming, and statistical data protection. Several interior-point meth-
ods have been devised to solve these structured problems
[5,7,12,16,25]. These specialized algorithms exploit the particular
structure of the constraints matrix, and some were implemented
for parallel environments [5,25]. The efficiency of interior-point
methods critically depends of the linear system solver used at each
iteration to compute the Newton direction. Such systems are often
written in a symmetric indefinite form, known as the augmented
system. They can also be reduced to a smaller positive definite
form, the normal equations. Techniques based on direct and itera-
tive solvers can be applied for their solution. For some classes of
large scale problems the use of direct methods becomes prohibi-
tive due to storage and time limitations, whereas iterative linear
solvers with appropriate preconditioners may be more efficient.

The efficient interior-point algorithm for primal block-angular
problems of [15] solved the normal equations in two stages: Chole-
sky factorizations for the block constraints and a Preconditioned

Conjugate Gradient (PCG) for the linking constraints. The purpose
of PCG is to avoid solving the system associated to the complicat-
ing linking constraints by Cholesky factorizations, in an attempt to
make the problem block separable. The preconditioner is obtained
by truncating an infinite power series that approximates the in-
verse of the system to be solved. For some difficult primal block-
angular problems this approach outperformed state-of-the-art
commercial solvers [16]. However, in some problems, systems be-
come very ill-conditioned as the optimal solution is reached, and
then PCG provides slow and inaccurate solutions. It was shown
[16] that the efficiency of this approach depends on the spectral ra-
dius—in [0,1)—of a certain matrix which appears in the definition
of the preconditioner (which is itself related to the Schur comple-
ment of the normal equations). Spectral radius close to 1 degrades
the performance of the preconditioner. When PCG gives inaccurate
solutions, the code implemented in [15] switches to the solution of
the normal equations by a Cholesky factorization, which may be
prohibitive for large-scale problems.

In order to yield a reliable and efficient interior-point method
based just on iterative solvers we introduce a hybrid and adaptive
scheme for solving the normal equations. On the first interior-point
iterations the normal equations are solved using the Cholesky-PCG
approach of [15] outlined above. When the system associated to
linking constraints becomes ill-conditioned, the normal equations
are solved by a PCG using the splitting preconditioner of [29,30],
instead of switching to a direct solver. The splitting preconditioner
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is a generalization of the tree preconditioner of [33] for large-scale
minimum cost network flow problems. Based on a LU factorization,
the splitting preconditioner was specially tailored for the last inte-
rior-point iterations, when the systems are ill-conditioned. We
developed a new and efficient criterion to identify when (i.e., at
which interior-point iteration) to switch between iterative solvers.
This criterion is based on both the Ritz values of the matrix that ap-
pears in the definition of the power series preconditioner, and the
number of PCG iterations needed at each interior-point iteration.
The Ritz values are approximations of the eigenvalues of a matrix;
they will be used to estimate the spectral radius, which measures
the efficiency of the power series preconditioner. An implementa-
tion of this new approach, combining the power series and the
splitting preconditioners, was applied to three classes of primal
block-angular instances [15]: multicommodity flows (oriented
and nonoriented), minimum-distance controlled tabular adjust-
ment for statistical data protection, and the minimum congestion
problem. As it will be shown, the hybrid approach was more effi-
cient than the power series preconditioner in many block-angular
problems. Other hybrid approaches combining interior-point and
combinatorial algorithms have been used for some type of net-
works flows problems [21].

This paper is organized as follows. In Section 2 we recall the ba-
sic ideas of interior-point methods for primal block-angular prob-
lems using the power series preconditioner. The new hybrid
approach is described in Section 3, together with an outline of
the splitting preconditioner, and a description of the switching cri-
terion between preconditioners. Numerical experiments are shown
in Section 4. The effect of different regularization parameters for
the splitting preconditioner are also discussed in Section 4. Finally,
in Section 5 the conclusions are drawn and further developments
are suggested.

2. The interior-point algorithm for primal block-angular
problems

One of the most efficient interior-point methods for some clas-
ses of block-angular problems was initially developed for multi-
commodity flows [12] and later extended for general primal
block-angular problems [15]. This method considers the following
general formulation of a block-angular problem:
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Matrices Ni 2 Rmi�ni and Li 2 Rl�ni ; i ¼ 1; . . . ; k, define, respectively,
the block and linking constraints, k being the number of blocks. Vec-
tors xi 2 Rni ; i ¼ 1; . . . ; k, are the variables for each block. x0 2 Rl are

the slacks of the linking constraints. bi 2 Rmi ; i ¼ 1; . . . ; k is the
right-hand-side vector for each block of constraints, whereas

b0 2 Rl is for the linking constraints. The upper bounds for each
group of variables are defined by ui, i = 1, . . . ,k. This formulation
considers the general form of linking constraints

b0 � u0
6
Pk

i¼1Lixi
6 b0. ci 2 Rni and Qi 2 Rni�ni , i = 1, . . . ,k, are the

linear and quadratic costs for each group of variables. We also con-
sider linear and quadratic costs c0 2 Rl and Q0 2 Rl�l for the slacks.

We restrict our considerations to the separable case where Qi,
i = 0, . . . ,k, are diagonal positive semidefinite matrices.

Problem (1) can be written in standard form as

min cT xþ 1
2
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s:t: Ax ¼ b

0 6 x 6 u

ð2Þ

where A 2 Rm�n ðm ¼ lþ
Pk

i¼1mi, n ¼ lþ
Pk

i¼1ni and m 6 n),
Q 2 Rn�n; b 2 Rm and c; x;u 2 Rn. Replacing inequalities in (2) by a
logarithmic barrier with parameter l > 0, we obtain the logarithmic
barrier problem

min Bðx;lÞ , cT xþ 1
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s:t: Ax ¼ b:

ð3Þ

The first order KKT optimality conditions for the logarithmic barrier
problem—or equivalently, the perturbed KKT-l conditions for (2)—
are

Ax ¼ b;

AT y� Qxþ z�w ¼ c;

XZe ¼ le;
ðU � XÞWe ¼ le;

ðz;wÞ > 0; u > x > 0;

ð4Þ

where y 2 Rm; z 2 Rn;w 2 Rn are, respectively, the Lagrange multi-
pliers of constraints Ax = b, x P 0 and x 6 u; X; Z;U;W 2 Rn�n are
diagonal matrices made up of vectors x, z, u, w, and e 2 Rn is a vec-
tor of 1’s. The first two sets of equations of (4) impose, respec-
tively, primal and dual feasibility, while the remaining two
impose perturbed complementarity. The set of primal–dual solu-
tions C ¼ fðxl; yl; zl;wlÞ;l > 0g of (4) is known as the central path.
Primal–dual path-following interior-point algorithms approxi-
mately follow the central path by applying Newton’s method to
the nonlinear system of Eq. (4), reducing the barrier parameter l
at each iteration. When l ? 0 these solutions converge to the
optimal solution of the original problem. Full details can be found
in [37]. The Newton direction is obtained by solving a linear sys-
tem in variables Dx, Dy, Dz and Dw. In practice, variables Dz and
Dw are eliminated and the system reduces to the indefinite aug-
mented system form
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where H and r are defined as

H ¼ ðQ þ S�1W þ X�1ZÞ�1 r ¼ rc þ S�1rsw � X�1rxz; ð6Þ

and S = U � X. Eliminating Dx from the first group of equations sys-
tem (5) is reduced to the smaller positive definite normal equations

ðAHATÞDy ¼ rb þ AHr ¼ g: ð7Þ

For separable quadratic optimization problems Q and H are diago-
nal, and normal equations are usually the preferred choice for com-
puting the Newton direction.

2.1. Normal equations for block-diagonal problems

The performance of interior-point methods relies on the effi-
cient solution of either (5) or (7). For block-angular problems (1)
matrices A and H have a special structure. The interior-point algo-
rithm used in this work [12,15] solves the normal Eq. (7) by
exploiting the block decomposition of AHAT:
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