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a b s t r a c t

This paper proposes new methods for computation of greeks using the binomial tree and the discrete Mal-
liavin calculus. In the last decade, the Malliavin calculus has come to be considered as one of the main
tools in financial mathematics. It is particularly important in the computation of greeks using Monte Car-
lo simulations. In previous studies, greeks were usually represented by expectation formulas that are
derived from the Malliavin calculus and these expectations are computed using Monte Carlo simulations.
On the other hand, the binomial tree approach can also be used to compute these expectations. In this
article, we employ the discrete Malliavin calculus to obtain expectation formulas for greeks by the bino-
mial tree method. All the results are obtained in an elementary manner.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, the Malliavin calculus has come to be consid-
ered as one of the main tools in financial mathematics. It is partic-
ularly important for computations of greeks. However, the
Malliavin calculus appears to be a very difficult concept to under-
stand for most practitioners. Because of these reasons, we employ
the discrete Malliavin calculus on symmetric Bernoulli random
walks. This approach enables us to compute discrete Malliavin
greeks using only elementary mathematics.

Greeks are quantities that represent the sensitivities of the
price of derivative securities with respect to changes in the under-
lying asset price or parameters. They are defined in terms of the
derivative of the option price with respect to parameters. One
such greek, Delta, measures the sensitivity of the option price
with respect to changes in the asset price. It is defined by the first
derivative of the option value function with respect to the asset
price. Another greek, Gamma, measures the sensitivity in the delta
with respect to changes in the underlying asset price. It is defined
by the second derivative of the option value function with respect
to the asset price. Vega measures the sensitivity of the option
price with respect to changes in the volatility level, r. It is defined
by the first derivative of the option value function with respect to
the volatility level. These sensitivities are often important for risk
management. In mathematical finance, sensitivities for options
with a complex pay-off structure are often considered. Fournié
et al. (1999) employed the Malliavin calculus to compute greeks

and overcome these problems. For further discussion, refer to
Benhamou (2003) and Kohatsu-Higa and Montero (2003) among
others. In addition, refer Nualart (2006); Nunno et al. (2008),
and Privault (2009) for discussions on the Malliavin calculus.
Greeks are derived by combinations of the Malliavin calculus
and Monte Carlo simulations in most previous studies. On the
other hand, another important tool for evaluating greeks for con-
tingent claims is the binomial tree approach introduced by Cox
et al. (1979). Although the naive finite difference approach is
the most intuitive way to determine the sensitivity for the options
value function, it is not a robust approach and thus not recom-
mended. Pelsser and Vorst (1994) proposed a simple calculation
for computing delta and gamma in the binomial tree approach.
Also, refer to Hull (2008) for discussion on this topic. Although
computational methods for delta and gamma have been investi-
gated in these past studies, the computational method for the
vega, for instance, is not clear if the simple finite difference ap-
proach is not used. There is an alternative method for computing
greeks in the binomial tree approach. Rozario (2004) derived dis-
crete Malliavin greeks in the binomial tree model by discretizing
(continuous) Malliavin greeks. The effectiveness of this method is
discussed in that article. However, an even more direct approach
can be employed. Discrete Malliavin greeks can be obtained by
the binomial tree approach. This approach is more direct because
one does not have to consider the continuous time model. It di-
rectly leads expectation formulas for discrete Malliavin greeks
in binomial tree settings. Interestingly, all the discussions on der-
ivations of greeks with this approach are very similar to discus-
sions in the continuous time model, when the discrete Malliavin
derivative and the discrete Skorohod integrals are defined.
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The remainder of this paper is organized as follows. We intro-
duce the discrete Malliavin calculus and the basic properties for
the discrete Malliavin derivative and the discrete Skorohod inte-
grals are also discussed. Leitz-Martini (2000) first introduced the
discrete Malliavin calculus to obtain the discrete Ocone and Clark
formulas. The discrete Malliavin calculus of Leitz-Martini (2000)
was extended to more general cases by Privault (2008, 2009) for
other applications. Leitz-Martini (2000) defined the discrete Sko-
rohod integrals using discrete Wick products, and Privault (2008,
2009) defined them using the discrete Wiener–Chaos expansions.
Although our definition on the discrete Skorohod integrals is more
elementary than the definitions in these previous studies, they are
equivalent each other. This is also discussed. The formulas for dis-
crete Malliavin greeks after brief explanations on the binomial tree
approach of Cox et al. (1979). Computational results are also pre-
sented in the last section.

2. Discrete Malliavin calculus

The discrete Malliavin derivative and the discrete Skorohod
integrals are defined in this section. Further, we discuss the funda-
mental results of the discrete Malliavin calculus to evaluate greeks
in the next section.

Let �ðpÞi

n o
i¼1;...;N

be a sequence of identically independent ran-

dom variables defined on a probability space ðX;F ;QÞ with

Q �ðpÞi ¼
ffiffiffiffiffiffi
Dt
ph i

¼ p; Q �ðpÞi ¼ �
ffiffiffiffiffiffi
Dt
ph i

¼ 1� p ð0 < p < 1Þ:

As a special case, if a random variable �ðpÞi is a symmetric Bernoulli
random variable, i.e. p = 1/2, the random variable �ð1=2Þ

i is denoted
simply by �i. The time step Dt is fixed at Dt = T/N, where T is the
horizontal time of our model. A filtration fF iDtgi¼0;...;N is defined by

F 0 ¼ f/;Xg; F iDt ¼ r �ðpÞ1 ; . . . ; �ðpÞi

� �
. We define that F as a random

variable generated by �ðpÞi

n o
i¼1;...;N

, if there is a function f(x1, . . . ,xN)

such that F ¼ f �ðpÞ1 ; . . . ; �ðpÞN

� �
. The random variable F is termed an

F iDt measurable random variable, if there is a function f(x1, . . . ,xi),

such that F ¼ f �ðpÞ1 ; . . . ; �ðpÞi

� �
. The symbols �ðpÞ1 ; . . . ; �ðpÞi

� �
and

(�1, . . . ,�i) are denoted as eðpÞi

� �
and (ei), respectively, for simplicity.

A set of random variables {FiDt}i=1,. . .,N defined on time

{Dt,2Dt, . . . ,NDt}, which is generated by �ðpÞi

n o
i¼1;...;N

, is represented

by a set of functions {fi(x1, . . . ,xN)}i=1,. . .,N. It is expressed as

FiDt ¼
XN

j¼1

fj eðpÞN

� �
1iðjÞ; ð2:1Þ

where a function 1i(j) is an indicator function, i.e., 1i(j) = 1(i = j) and
1i(j) = 0(i – j). Then, a set of random variables {FiDt}i=1,. . .,N is called a

stochastic process generated by �ðpÞi

n o
i¼1;...;N

.

Example 2.1. A stochastic process WðpÞ
iDt

n o
i¼1;...;N

is referred to as a

random walk, if WðpÞ
iDt is expressed as

W ðpÞ
iDt ¼

XN

j¼1

�ðpÞ1 þ � � � þ �
ðpÞ
i

� �
1iðjÞ ¼ �ðpÞ1 þ � � � þ �

ðpÞ
i :

As a special case, if the upward probability p is fixed at p = 1/2, the
stochastic process W ð1=2Þ

iDt is referred to as a symmetric random walk.
This symmetric random walk is denoted by W ð1=2Þ

iDt ¼WiDt for abbre-
viation. The symmetric random walk is regarded as an approxima-
tion of the Brownian motion, if the time interval Dt is sufficiently

small. The asymmetric random walk W ðpÞ
iDt

n o
i¼1;...;N

is also regarded

as an approximation of the Brownian motion with a drift 2p�1ffiffiffiffi
Dt
p .

A set of random variables fFiDt;jDtgi;j¼1;...;N
i–j defined on the pairs of

times fðiDt; jDtÞgi;j¼1;...;N
i–j is represented by the functions

ffi;jðx1; . . . ; xNÞgi;j¼1;...;N
i–j . It is expressed as

FiDt;jDt ¼
XN

k;l¼1;k–l

fi;j eðpÞN

� �
1i;jðk; lÞ; ð2:2Þ

where the function 1i,j(k, l) is an indicator function, i.e., 1i,j(k, l) = 1
(i = k and j = l) and 1i,j(k, l) = 0 (otherwise). Then, a set of random

variables fFiDt;jDtgi;j¼1;...;N
i–j is called a generalized stochastic process

generated by �ðpÞi

n o
i¼1;...;N

. We exploit the generalized stochastic

process to compute gamma.
In this article, we only introduce the discrete Malliavin calculus

on the symmetric random walk. However, one can also construct
the discrete Malliavin calculus on the asymmetric random walk
W ðpÞ

iDt . Refer to Privault (2008, 2009) for discussion on that topic.
Let us assume that there are two random variables X(eN) and
Y(eN). The inner product on these random variables is defined by

hX;YiL2 ¼ E½XðeNÞYðeNÞ� ¼
1

2N

X
eN2X

XðeNÞYðeNÞ:

A set of random variables generated by {�i}i=1,. . .,N with a finite norm
is denoted by L2(X,Q). This set is called the discrete Wiener space.

Definition 2.1. The discrete Malliavin derivative for every random
variable F = f(eN) 2 L2(X,Q) is an operator from an element in
L2(X,Q) into a stochastic process; {DiDtF}i=1,. . .N is defined by

DiDtF ¼
XN

j¼1

f eiþ
N

� �
� f ei�

N

� �
2
ffiffiffiffiffiffi
Dt
p 1iðjÞ ¼

f eiþ
N

� �
� f ei�

N

� �
2
ffiffiffiffiffiffi
Dt
p ;

where new symbols ekþ
i

� �
and ek�

i

� �
are defined by

ek�
i

� �
¼ �1; . . . ; �k�1;�

ffiffiffiffiffiffi
Dt
p

; �kþ1; . . . ; �i

� �
:

We will now demonstrate several examples of the discrete Mal-
liavin derivative.

Example 2.2. A stochastic process Wk�
iDt

n o
i¼1;...;N

is a Bernoulli

random walk with a deterministic epoch at time kDt. In other
words, the random variable �k is deterministic and is defined by

Wk�
iDt ¼ �1 þ � � � þ �k�1 �

ffiffiffiffiffiffi
Dt
p

þ �kþ1 þ � � � þ �i

if k 6 i and Wk�
iDt ¼WiDt if k > i. Let us regard the random walk at

time iDt as a random variable. Applying the discrete Malliavin
derivative to WiDt results in the following expression,

DkDtWiDt ¼
Wkþ

iDt �Wk�
iDt

2
ffiffiffiffiffiffi
Dt
p ¼ 1k6i:

Example 2.3. Let f(�) be a differentiable function. Applying the dis-
crete Malliavin derivative to a random variable f(WiDt) leads to

DkDtf ðWiDtÞ ¼
f Wkþ

iDt

� �
� f Wk�

iDt

� �
2
ffiffiffiffiffiffi
Dt
p : ð2:3Þ

We consider three cases for (2.3).

� Case 1. k > i: The relation Wkþ
iDt ¼Wk�

iDt ¼WiDt is satisfied in this
case. This relation leads to the immediate result DkDtf(WiDt) = 0.
� Case 2. k 6 i and �k ¼

ffiffiffiffiffiffi
Dt
p

: The relations Wkþ
iDt ¼WiDt and

Wk�
iDt ¼WiDt � 2

ffiffiffiffiffiffi
Dt
p

are satisfied. If Dt is sufficiently small, this
relation leads to the following result
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