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a b s t r a c t

The large-scale natural gas equilibrium model applied in Egging, 2013 combines long-term market equi-
libria and investments in infrastructure while accounting for market power by certain suppliers. Such
models are widely used to simulate market outcomes given different scenarios of demand and supply
development, environmental regulations and investment options in natural gas and other resource mar-
kets.

However, no model has so far combined the logarithmic production cost function commonly used in
natural gas models with endogenous investment decisions in production capacity. Given the importance
of capacity constraints in the determination of the natural gas supply, this is a serious shortcoming of the
current literature. This short note provides a proof that combining endogenous investment decisions and
a logarithmic cost function yields a convex minimization problem, paving the way for an important
extension of current state-of-the-art equilibrium models.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The natural gas model applied in Egging (2013) is one of the lat-
est in a series of equilibrium models for this particular fuel. The
interest stems from several potentially game-changing trends: lib-
eralization of natural gas markets, carbon dioxide emission con-
straints and an expected replacement of coal by relatively clean
natural gas in Europe (EC Energy Roadmap, 2011); unconventional
reserves in North America and other regions (IEA, 2011); and fre-
quent concerns regarding supply security and European depen-
dence on a small number of suppliers (cf. Leveque et al., 2010).

Hence, a number of equilibrium models have been developed
over the past decade to provide numerical analysis of different
scenarios regarding future supply and demand patterns, environ-
mental regulation and infrastructure investment options. Two
large-scale natural gas equilibrium models are the GASTALE model,
developed by ECN (Lise & Hobbs, 2008), and the World Gas Model
(WGM), joint work by the University of Maryland and DIW Berlin
(Egging, Holz, & Gabriel, 2010).1 These models share a number of
characteristics, similar to the model in Egging (2013): they are
spatial partial equilibrium models with a detailed geographic disag-
gregation, allowing for analysis and comparison of different pipeline
and LNG export/import options; they consider seasonality within a

year and explicitly model storage to shift natural gas between low-
and high-demand seasons; they are multi-period models and endog-
enously determine optimal investment in infrastructure2; and they
allow for oligopolistic behavior by (a subset of) suppliers, i.e., Cour-
not competition. Furthermore, all these models apply a logarithmic
cost function, as first proposed by Golombek, Gjelsvik, and Rosen-
dahl (1995), in order to capture the specific characteristics of natural
gas production: sharply increasing costs when producing close to full
capacity.

However, none of these models allows for endogenous invest-
ment in production capacity; instead, the production capacity in
future periods is defined exogenously. Given that production
capacity is a significant determinant of results and that these mod-
els simulate price and quantity trajectories for several decades into
the future, this omission is certainly a major drawback. It is owed,
in all likelihood, to the rather complicated functional form when
including investment decision variables in the logarithmic cost
function. This paper provides the proof that this extension yields
a convex problem, which is a prerequisite for solving this problem
as an equilibrium model.

Let me also mention one other recent natural gas model: the
GaMMES model was developed by EDF and IFPEN (Abada, Gabriel,
Briat, & Massol, 2013). In contrast to the models presented above, it
distinguishes between spot market sales and long-term contracts.
It also assumes a slightly different formulation of the logarithmic
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1 Both models were published in different versions and used extensively for
scenario simulations; only one recent publication for each model is cited here.

2 GASTALE implements a rolling-horizon investment model, while WGM is an
open-loop equilibrium model.
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cost function: production costs are not increasing relative to capac-
ity utilization, as in the other models, but relative to remaining re-
serves. This is an interesting approach, but differs from what is
discussed here.

All these models are formulated as Mixed Complementarity
Problems (MCP). The optimization problems of different players
subject to engineering and other constraints are solved simulta-
neously by deriving their respective Karush–Kuhn–Tucker (KKT)
conditions, combined with market clearing constraints. The MCP
framework is convenient for this type of exercise, as it allows to in-
clude Cournot market power for certain suppliers, in contrast to
welfare maximization or cost minimization problems. In addition,
these models can easily be extended to include stochasticity (e.g.,
Gabriel, Zhuang, & Egging, 2009) or two-level problems such as
Stackelberg competition (e.g., Siddiqui & Gabriel, 2013).

2. Mathematical formulation

Assume a supplier with decision variables qy (production quan-
tity) and ey (production capacity expansion/investment). The peri-
ods are denoted by y 2 f1; . . . ; �yg. In order to keep the notation
concise, y denotes both a period as well as its position in the set.
Hence, �y stands for both the last period as well as the number of
periods in the set. Following this logic, I use y0 < y for ‘‘all periods
y0 prior to period y’’ in sums and indices, and y0 > y for the inverse
statement. The price at which the produced quantity is sold is de-
noted by py, and the initial production capacity is �q.

Production costs cy(�) are determined by a logarithmic cost
function as introduced by Golombek et al. (1995) related to capac-
ity utilization (see Eq. (3a) below).3 This function is illustrated in
Fig. 1: marginal production costs increase sharply when operating
close to capacity. Hence, if capacity is expanded, marginal produc-
tion costs for the same quantity decrease.

In line with the literature cited above, capacity investment costs
are assumed to be linear. The parameters of the cost function are
denoted by greek letters and may vary by period: ay, by, cy are
the parameters for the production cost function; jy is the (linear)
unit production capacity investment cost. All cost parameters are
non-negative. Discounting of future profits may be implicitly in-
cluded in the price and cost parameters. For now, I abstract from
Cournot market power and other considerations such as reserve
horizon or maximum investment constraints. These extensions
are briefly discussed below.

Furthermore, I assume that cy is strictly positive. As a conse-
quence, the production quantity qy is implicitly bounded from
above; this is explained in more detail below. I can therefore omit
an explicit production capacity constraint. Otherwise, the problem
would reduce to a quadratic optimization problem under linear
capacity constraints, and hence convexity would hold trivially.

The profit maximization problem of the supplier can then be
written as follows, converted to a minimization problem:

min
q;e

f ðq; eÞ ¼
X

y

� pyqy þ cyðqy; e1; . . . ; ey�1Þ þ jyey ð1Þ

s:t: q; e 2 R
�y
þ

This yields the following Karush–Kuhn–Tucker (KKT)
conditions:

� py þ
@cyð�Þ
@qy

P 0 ? qy P 0 ð2aÞ

X
y0>y

@cy0 ð�Þ
@ey

þ jy P 0 ? ey P 0 ð2bÞ

This optimization problem relates to Eq. (3.1.1) in Egging (2013).
The KKT condition concerning the production quantity relates to
Eq. (3.7.16).

It is straightforward to see that there will never be investment
in the last period; the KKT condition reduces to 0 + jy P 0, imply-
ing ey = 0 if jy > 0. This variable and the associated equation can
thus be omitted from further consideration.

The production cost function and its partial derivatives are
listed below. In order to make the notation more concise, the
sum of previous investments,

P
y0<yey0 , is replaced by e(y) for the

remainder of this work.

cyð�Þ ¼ ðay þ cyÞqy þ bq2
y

þ cyð�qþ eðyÞ � qyÞ ln 1�
qy

�qþ eðyÞ

� �
ð3aÞ

@cyð�Þ
@qy

¼ ay þ 2byqy � cy ln 1�
qy

�qþ eðyÞ

� �
ð3bÞ

@cyð�Þ
@eŷ

¼ cy ln 1�
qy

�qþ eðyÞ

� �
þ cy

qy

�qþ eðyÞ if ŷ < y ð3cÞ

@2cyð�Þ
@q2

y
¼ 2by þ cy

1
�qþ eðyÞ � qy

ð3dÞ

@2cyð�Þ
@eŷ@e~y

¼ cy

q2
y

ð�qþ eðyÞ � qyÞð�qþ eðyÞÞ2
if ŷ < y ^ ~y < y ð3eÞ

@2cyð�Þ
@qy@eŷ

¼ �cy

qy

ð�qþ eðyÞ � qyÞð�qþ eðyÞÞ if ŷ < y ð3fÞ

Given this cost function and assuming cy > 0 "y, marginal produc-
tion costs tend to infinity when the produced quantity tends to ini-
tial capacity plus expansions in previous periods. Hence, production
quantity qy is implicitly bounded by capacity. Mathematically
speaking, for any py > 0, there exists a quantity qy with @cyð�Þ

@qy
P py

and qy < �qþ eðyÞ. Hence, an explicit production capacity condition
is not required as a constraint in the optimization problem (1).4

c(q,0)

q

c(q,e)

q

q q + e

Fig. 1. Illustration of the marginal cost function (production capacity �q) without investment (—) and with additional investment e (--).

3 The production cost function is not explicitly specified in Egging (2013), but it is
discussed in detail in the dissertation referenced in the article.

4 Since Egging (2013) does not assume cy > 0 for all suppliers and years, the
capacity constraint is included there explicitly (Eqs. (3.1.2) and (3.7.17)).
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