Accepted Manuscript

Title: Electrodeposited Iridium Oxide on Platinum Nanocones for Improving Neural Stimulation Microelectrodes

Authors: Qi Zeng, Kai Xia, Bin Sun, Youlin Yin, Tianzhun Wu, Mark S. Humayun

PII: DOI: Reference:	S0013-4686(17)30722-3 http://dx.doi.org/doi:10.1016/j.electacta.2017.03.213 EA 29247
To appear in:	Electrochimica Acta
Received date:	13-12-2016

Revised date:2-3-2017Accepted date:28-3-2017

Please cite this article as: Qi Zeng, Kai Xia, Bin Sun, Youlin Yin, Tianzhun Wu, Mark S.Humayun, Electrodeposited Iridium Oxide on Platinum Nanocones for Improving Neural Stimulation Microelectrodes, Electrochimica Actahttp://dx.doi.org/10.1016/j.electacta.2017.03.213

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrodeposited Iridium Oxide on Platinum Nanocones for Improving Neural Stimulation Microelectrodes

Qi Zeng^{1,#}, Kai Xia^{1,#}, Bin Sun^{1,#}, Youlin Yin¹, Tianzhun Wu^{1,*}, Mark S. Humayun^{1, 2}

¹Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

²USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

Abstract: Microelectrodes for electrical neural stimulation play an important role in various medical and brain science applications, however, the shrinking size of microelectrodes leads to high electrode/tissue interfacial impedance and low charge injection capacity (CIC). In order to achieve safe, efficient and durable electrode performances, we proposed a layer-by-layer electrodeposition method to modify the bare platinum (Pt) microelectrodes. Combining the advantages of platinum gray (Pt gray) with iridium oxide (IrO_x), herein a low impedance and high charge injection IrO_x/Pt gray microelectrode was fabricated with nanoscale roughness. Morphological tests showed that nanocone-shaped Pt gray provided large effective surface area and hence good adhesion for dense IrO_x deposition, which was beneficial for long-term mechanical stability of the composite coating. A typical microelectrode sample with the nanostructured IrO_x/Pt gray coating had a low impedance down to 2.45 k Ω ·cm² at 1 kHz, and a cathodic charge storage capacity (CSC_e) up to 22.29 mC·cm⁻², which was about 6, 2.8 and 2.7 times higher than CSC_e of those samples coated with bare Pt, Pt gray and IrO_x, respectively.

[#] Q. Zeng, K. Xia and B. Sun contributed equally to the work.

^{*} Corresponding author. Tel.: +86 755 86392339.

E-mail address: tz.wu@siat.ac.cn (T.Z. Wu).

Download English Version:

https://daneshyari.com/en/article/4767139

Download Persian Version:

https://daneshyari.com/article/4767139

Daneshyari.com