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a b s t r a c t

The Sequential Probability Ratio Test (SPRT) control chart is a powerful tool for monitoring manufactur-
ing processes. It is highly suitable for the applications where testing is destructive or very expensive, such
as the automobile airbags test. This article studies the effect of the Average Sample Number (ASN) (i.e.,
the average sample size) on the chart’s performance. A design algorithm is proposed to develop the opti-
mal SPRT chart for monitoring the fraction nonconforming p of Bernoulli processes. By optimizing the
ASN and other charting parameters, the average detection speed of the SPRT chart is almost doubled. It
is also found that the optimal SPRT chart significantly outperforms the optimal np and binomial CUSUM
charts, in terms of Average Number of Defectives (AND), under different combinations of the design spec-
ifications. It is observed that the SPRT chart using a relatively smaller ASN and a shorter sampling interval
(h) has a higher overall detection effectiveness.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since its introduction in Statistical Process Control (SPC) as an
effective tool to monitor processes and ensure quality, the control
chart had fast become a necessity and has been increasingly
adopted in modern industries and beyond the manufacturing sec-
tors (Chen and Cheng, 2009; Wang, 2012; Chen, 2013). The np
chart is the most popular and simple control chart for attributes.
It is used to examine the number d of nonconforming units found
in a sample or to monitor the fraction nonconforming p. The pro-
cess is considered to be in control if d 6 UCL, where UCL is the
upper control limit of the np chart. However, if d > UCL, then an
upward p shift is signaled.

More advanced charts for attributes including the binomial CU-
SUM chart and SPRT chart have also been developed to monitor p
(Gan, 1993; Reynolds and Stoumbos, 1998; Wu and Luo, 2003;
Wu et al., 2006, 2008). The widespread applications of the np chart
and other attribute charts are due to several factors, such as the
simplicity of handling attribute quality characteristics, the ease
of communication between people at different levels, the capabil-
ity of checking multiple quality requirements, and the prevalence
of count data in many applications, especially in non-manufactur-
ing sectors. Many quality characteristics cannot be measured on a
numerical or a quantitative scale.

Unlike the np chart that only uses the information of d in the
current sample, the binomial cumulative sum (CUSUM) chart
incorporates all the information in the sequence of observed values
of d (Lucas, 1985). While the CUSUM chart is more sensitive to
small and moderate shifts in fraction nonconforming p, it is less
effective than the np chart for detecting large p shifts. A statistic
Ei is updated and plotted for the ith sample in a binomial CUSUM
chart for detecting upward p shifts.

E0 ¼ 0
Ei ¼ maxð0; Ei�1 þ di � kÞ

ð1Þ

where k is the reference parameter and di is the number of noncon-
forming units found in the ith sample. When an increasing p shift
occurs, Ei tends to increase. Eventually, a sample point will exceed
the control limit U of the CUSUM chart, and thereby an out-of-con-
trol signal is produced.

The Bernoulli CUSUM chart is a special case of the binomial CU-
SUM chart. If the sample size n of a binomial CUSUM chart is set at
one, the binomial CUSUM chart is termed as the Bernoulli CUSUM
chart. Reynolds and Stoumbos (1999) found that the Bernoulli CU-
SUM chart substantially outperforms the p chart for detecting
shifts in p. Reynolds and Stoumbos (2000) showed that there is a
little difference between the Bernoulli CUSUM chart and the bino-
mial CUSUM chart in terms of the expected time required to detect
small and moderate shifts in p, but the Bernoulli CUSUM chart is
better for detecting large shifts in p. Bourke (2001) also highlighted
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that the advantage of using n = 1 for the CUSUM chart is greater for
larger shifts when the in-control Average Run Length is small.

Traditional control charts are operated by using a Fixed Sam-
pling Rate (FSR) obtaining samples of fixed size n from the process
using a fixed sampling interval h. Contrary to these traditional
charts, n may be varied based on the data observed in the current
sample. This is the concept of sequential analysis (Wald, 1947;
Ghosh, 1970). Wald (1947) first defined the Sequential Probability
Ratio Test (SPRT) and showed that it is optimal to produce a lower
expected sampling size than any other tests with the same proba-
bility of error. The SPRT charts are usually much more effective
than the FSR charts, but they are more difficult to implement.

Woodall and Reynolds (1983) used tests that can be repre-
sented exactly by discrete Markov chains to approximate the prop-
erties of the SPRT. Stoumbos and Reynolds (1997b) employed the
Corrected Diffusion Theory (CDT) to evaluate the properties and
statistical design of SPRT charts. Researchers also applied the SPRT
chart to different areas and applications, such as sampling plan, arc
welding, failure analysis and radiation (Bagchi, 1992; Stefan et al.,
1996; Kwon et al., 2008; Luo et al., 2010). Stoumbos and Reynolds
(1996) generalized the development and applications of the SPRT
chart. The SPRT chart is especially appropriate for applications
where testing is destructive and/or expensive, such as deploy-
ment-rate testing of automobile airbags and durability testing for
batch-produced plastic eyeglass lenses (Stoumbos and Reynolds,
1997a). Usually, the time required to test an airbag is short, com-
pared with the interval between the sampling inspections, which
are often no more than once for every work shift. In such applica-
tions, the efficient use of sampling resources is very important.
With the adoption of the SPRT chart, the sampling rate will be very
low when the process is in control, and therefore the sampling cost
can be reduced substantially.

An attribute SPRT control chart for detecting shifts in fraction
nonconforming p was proposed by Reynolds and Stoumbos
(1998). Inside a sample of an SPRT chart, individual observations
are taken sequentially, with the possibility of a decision about
the process after each observation. The statistical properties of
the SPRT chart are evaluated based on the assumption that the
time required to obtain an individual observation is short enough
to be neglected relative to the sampling interval h between two
samples. The SPRT chart has the administrative advantage of using
a fixed sampling interval (FSI). Since the SPRT chart allows the
sample size used at each sample to vary, it is similar to a variable
sample size (VSS) chart. However, while the sample size of a VSS
chart used at the current sample point depends on the data ob-
tained in the last sample (Chen and Hsieh, 2007; Lee, 2013), the
sampling size of an SPRT chart is determined based on the data ob-
served at the current sample point.

Reynolds and Stoumbos (1998) found that the SPRT chart is
substantially more effective than the FSR charts, such as the p
chart, the binomial CUSUM chart, or the Bernoulli CUSUM chart.
However, neither the p chart, CUSUM chart, nor SPRT chart had
been optimized in their study. Consequently, none of these charts
performs at its highest detection effectiveness. Moreover, no sys-
tematic procedure was provided to determine the charting param-
eters of the SPRT chart. If these parameters are optimized, the
overall effectiveness of the SPRT chart increases.

The objective of this article is to find the optimal Average Sam-
ple Number (ASN) of the attribute SPRT chart that results in the
best overall performance. Moreover, the influence of ASN on the
overall performance of the SPRT chart is studied. The results of per-
formance studies reveal that the SPRT chart using a relatively small
ASN (together with a short h) has a very high effectiveness. How-
ever, the optimal value of ASN of each SPRT chart needs to be deter-
mined by the optimal design. The sample size n and sampling
interval h of the np and binomial CUSUM charts will also be

optimized in order to achieve their best overall performance. The
optimal n and the corresponding h are determined by an exhaus-
tive search that tests all the possible values of n (starting from
n = 1). The optimal n should be explored in a range as broad as pos-
sible until no further improvement in the overall performance can
be expected. Optimizing n and h for these traditional attribute con-
trol charts will also significantly improve their detection effective-
ness so that they can stand as firm competitors to the SPRT chart.

The SPRT chart proposed by Reynolds and Stoumbos (1998) is
called the basic SPRT chart in this article. In the design of a basic
SPRT chart, ASN and the reference value c are given in advance.
Two new SPRT charts are proposed in this article. The first one is
a semi-optimal SPRT chart in which only c is optimized. The second
one is called the optimal SPRT chart in which both c and ASN are
optimized. In both new SPRT charts, the optimal design aims at
minimizing an objective function AND (Average Number of Defec-
tives) (Haridy et al., 2013). As the AND is minimized, the overall
performance of the SPRT chart will be improved.

The in-control and out-of-control performance of a control
chart is usually measured by the Average Time to Signal (ATS).
The in-control ATS0 must be large enough so that a false alarm oc-
curs infrequently. At the same time, the out-of-control ATS should
be small enough to detect the process shifts quickly. There is al-
ways a trade-off between a larger in-control ATS0 and a smaller
out-of-control ATS. In this article, ATS is calculated by using the
steady-state mode. This mode implies that the process starts and
stays in an in-control condition for a long time and then a process
shift occurs at some random time. This random time is assumed to
have a uniform distribution between two samples (Reynolds et al.,
1990).

In this article, it is assumed that the random number d (the
number of nonconforming units in a sample) follows a binomial
distribution. The focus of the research is to monitor the fraction
nonconforming p of Bernoulli processes. The time required to take
an observation inside each sample is negligible compared with the
sampling interval h between samples.

Since the control charts for attributes are most often used to de-
tect an increase in fraction nonconforming p or deterioration in
product quality (Lucas, 1985; Reynolds and Stoumbos, 1999), the
focus of this research is to detect increasing p shifts. If detecting
decreasing p shifts is desired, a symmetric SPRT scheme can be
built as well.

The remainder of this article proceeds as follows. In Section 2,
the SPRT chart is introduced. The objective function AND is pre-
sented in Section 3, and the determination of the optimal ASN of
the SPRT chart is also detailed in this section. In Section 4, a com-
parative study is conducted and the effect of ASN on the perfor-
mance of the SPRT chart is analyzed. An illustrative example is
given in Section 5. Finally, the discussions and conclusions are
drawn.

2. SPRT chart

An SPRT chart has five charting parameters: Average Sample
Number (ASN) (or average sample size), reference value (c), sam-
pling interval (h), lower limit (g) and upper limit (H). A sample is
taken at the end of each fixed sampling interval h. Within a sample,
when the ith observation xi has been taken, it is used to update the
test statistic Ci. For an upper one-sided SPRT chart (where
�1 < g < H <1),

C0 ¼ 0
Ci ¼ Ci�1 þ xi � c

ð2Þ

where xi is a Bernoulli random variable which is defined as xi = 1 if
the ith item is nonconforming and xi = 0 otherwise. The choice of c
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