Accepted Manuscript

Title: Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO_3 films

Author: R. Levinas N. Tsyntsaru M. Lelis H. Cesiulis

PII:	S0013-4686(16)32671-8
DOI:	http://dx.doi.org/doi:10.1016/j.electacta.2016.12.112
Reference:	EA 28584
To appear in:	Electrochimica Acta
Received date:	25-8-2016
Revised date:	13-12-2016
Accepted date:	19-12-2016

Please cite this article as: R.Levinas, N.Tsyntsaru, M.Lelis, H.Cesiulis, Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO3 films, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2016.12.112

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO₃ films

R. Levinas¹, N. Tsyntsaru^{1,2,*,**}, M. Lelis³, H. Cesiulis¹

¹Vilnius University, Naugarduko str. 24, Vilnius, Lithuania ²Institute of Applied Physics of ASM, Academiei str. 5, Chisinau, Republic of Moldova ³Lithuanian Energy Institute, Kaunas, Lithuania *Corresponding author: <u>tintaru@phys.asm.md</u> ** ISE member, ORCID ID 0000-0002-9813-2460

Abstract

WO₃ films have been obtained by anodization of tungsten in the different acidic electrolytes (HCl, H₂SO₄, H₃PO₄, H₃PO₄ + NH₄F) and at various applied potentials. Electrochemical impedance spectroscopy was used to investigate film formation and to characterize the obtained oxide films. The equivalent electric circuits modelling reactive and blocking behaviour are provided and discussed. It was found, that oxide film capacitance decreases linearly with increasing anodization potential. The relative permittivity of tungsten oxide films varies from 31 to 56 depending on the acid used. A relatively high rate of the film formation (1.87 nm V⁻¹) and increased resistance against oxide breakdown can be achieved for tungsten oxide obtained from 0.3 M oxalic acid bath. Compact oxide films are formed at the potentials ranged from 10 V to 30 V, whereas increasing of anodization voltage to 60 V resulted in the formation of disordered, porous structures due to surface etching. Semiconductor properties were determined by Mott-Schottky analysis. Photoelectrochemical properties of as-deposited and annealed at 600°C WO₃ films were determined in a Na₂SO₄ solution under pulsed and constant UV irradiation. It was determined that annealed WO₃ films in comparison to as-deposited films are more stable and generate substantially higher photelectrochemical currents.

Keywords: anodization, tungsten trioxide, electrochemical impedance spectroscopy, annealing, photocurrent.

Download English Version:

https://daneshyari.com/en/article/4767343

Download Persian Version:

https://daneshyari.com/article/4767343

Daneshyari.com