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A B S T R A C T

Accurate state of charge (SOC) estimation is very crucial to guarantee the safety and reliability of lithium-
ion batteries, especially for those used in electric vehicles. Since the SOC is unmeasurable and nonlinearly
varies with factors (e.g., current rate, battery degeneration, ambient temperature and measurement
noise), a reliable and robust algorithm for SOC estimation is expected. In this paper, an optimal adaptive
gain nonlinear observer (OAGNO) for SOC estimation is proposed. The particle swarm optimization (PSO)
algorithm is employed to optimize parameters of the adaptive gain nonlinear observer (AGNO). A
combined error is presented as the fitness function to evaluate the search performance of the PSO
algorithm. To perform the PSO-based parameter optimization of the AGNO, a combined dynamic loading
profile consisting of the Federal Urban Driving Schedule, the New European Driving Cycle and the
Dynamic Stress Test is developed. The proposed approach is verified by experiments performed on
Panasonic NCR18650PF lithium-ion batteries and compared with different parametric AGNOs.
Experimental results indicate that the proposed OAGNO is helpful to improve the accuracy of battery
SOC estimation compared with the non-optimal AGNO methods. Additionally, the OAGNO approach is
robust against initial SOC error, current noise and different driving cycles.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, lithium-ion battery is becoming more and more
popular in energy storage systems, especially for those used in
electric vehicles and distributed power generation. Compared with
other kinds of batteries, lithium-ion battery has the merits of high
power/energy density, high cell voltage, pollution-free, no memory
effect, long lifespan, and low self-discharge rate [1]. However, it has
high requirements on the battery management system (BMS) to
guarantee the safety and reliability of battery operation. The BMS is
in charge of monitoring the battery operating parameter (e.g.,
voltage, current and temperature) and estimating the battery states,
e.g., state of charge (SOC), state of energy (SOE), state of health (SOH)
and state of power (SOP). SOC defined as the ratio of battery
remaining capacity to its nominal capacity decides how long the
battery can be used before recharging. It is regarded as the most key
parameter to be monitored by the BMS. Nevertheless, SOC is
immeasurable and influenced by amount of factors, such as current
rate, ambient temperature, battery degeneration, parameter

uncertainties and external disturbance. Thus estimation via
measureable variables (e.g., current, voltage and temperature) is a
commonly used method to obtain the approximate value of SOC.

1.1. Review of the SOC estimation approach

To get the accurate value of SOC, a number of approaches have
been developed, such as the Ampere-hour integral or Coulomb
counting method [2,3], open-circuit voltage method [4], electro-
chemical impedance spectroscopy method [5], machine learning-
based methods (e.g., artificial neural network [6–8] and support
vector machine [9,10]), KF-based methods (e.g., extended Kalman
filter (EKF) [11–19] and unscented Kalman filter (UKF) [20–28]),
sliding mode observer (SMO) method [29–31], and particle filter
method [32–34]. The first four methods need not establish the
battery models, so they are usually called as non-model based
methods. These methods featured by open-loop cannot correct
errors caused by inaccurate initialization of SOC, measurement
noise and external disturbance. Besides, the estimation accuracy of
the machine learning-based methods highly depends on quantity
of the training data. In practice, however, it is nearly impossible to
collect an adequate number of training data, which can cover all
loading scenarios of the battery. Besides, collection of the training
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data is time-consuming. Thus, the estimation accuracy of these
methods cannot be guaranteed for online application. Because of
the aforementioned factors, the application of the non-model
based and open-loop methods in accurate SOC estimation is
limited. Instead, the last four methods are categorized as model-
based and close-loop method, because they need to establish a
battery model for SOC estimation and have the ability of correcting
errors due to inaccurate initialization of SOC, model uncertainties,
measurement noise and external disturbance. Accordingly, com-
pared with the open-loop and non-model based methods, these
methods are more attractive to be used for accurate SOC estimation
and more investigated in recent years.

EKF and UKF were firstly introduced to estimate SOC of lithium-
ion batteries by Plett in 2004 [11] and 2006 [20] respectively.
Although the KF-based SOC estimation methods showed satisfying
results in terms of accuracy and robustness to measurement noise,
they have some shortcomings. For instance, the EKF suffers large
linearization error and needs to calculate the Jacobian matrix,
which may lead to instability of the filter and then reduce
estimation accuracy for strongly nonlinear battery systems [30],
e.g., the LiFePO4 battery. The studies of Li et al. [35] and He et al.
[36] indicated that the UKF performs better in terms of accuracy
and robustness compared with the EKF, however, the UKF takes
more computation time due to a large number of matrix
operations. In addition, the KF-based methods assume that the
noise in the system follows the Gaussian distribution, which is
usually inconsistent with the conditions in practical battery
systems. Furthermore, they require statistic knowledge of the
system and measurement noises, which is represented as
covariance. As a result, the accuracy of SOC estimation is strongly
dependent on the selection of the covariance. That is to say, an
inappropriate selection of covariance is likely to result in large
estimation error. To overcome this problem, adaptive EKF [16–19]
and adaptive UKF [27,28] were further developed, which can
adaptively update the covariance according to the observation
error. Nevertheless, the addition of update law significantly
increases the computation complexity. The SMO method can
guarantee the reliability and robustness of SOC estimation when
the battery systems suffer model uncertainties and stochastic
disturbances. Nevertheless, it is difficult for the designers to select
the reliable parameters of SMO, e.g., the switching gains and the
uncertainty boundaries, which obviously affect performance of the
SMO [29]. Furthermore, the SMO asks observation equation of the
system to be linear, so the relationship between OCV and SOC has
to be approximated by a linear function, which will reduce the SOC
estimation accuracy. Compared with the aforementioned methods,
the PF can be applied for SOC estimation of high-order nonlinear
battery systems suffered non-Gaussian distributed disturbances.
Nevertheless, its implementation is a great challenge to onboard
systems because it requires a large number of particles and
massive matrix operations. Furthermore, the PF-based method
may result large estimation error due to particle degeneration. In
our previous studies [37,38], a nonlinear observer-based algorithm
has been developed to efficiently estimate the battery SOC. In order
to improve the estimation performance, a modified SOC estimation
algorithm based an adaptive gain nonlinear observer was further
proposed in [39]. Nevertheless, the selection of the gain
coefficients having significant influence on the estimation perfor-
mance was not solved in the previous works.

1.2. Contribution of the paper

In this paper, we propose an optimal adaptive gain nonlinear
observer for SOC estimation of the lithium-ion batteries. Firstly, the
widely used 2nd-order equivalent circuit model is selected to
simulate the dynamic behaviors of the lithium-ion battery, and

parameters of the battery model are identified based on the voltage
response of pulse current discharging process and the exponential-
function fitting method. Then, the optimal adaptive gain nonlinear
observer forSOCestimationis developed. Inthismethod, the particle
swarm optimization (PSO) algorithm is introduced to optimize
parameters of the adaptive gain nonlinear observer. Accordingly, a
combined error is presented to be the fitness function to evaluate the
search performance of the PSO algorithm. To perform the PSO-based
parameter optimization of the adaptive gain nonlinear observer, a
combined dynamic loading profile composed of the Federal Urban
Driving Schedule, the New European Driving Cycle and the Dynamic
Stress Test is developed. Finally, the proposed approach is verified by
experiments performed on Panasonic NCR18650PF lithium-ion
batteries and compared with different parametric adaptive gain
nonlinearobservers. Experimental results indicate that the proposed
OAGNO algorithm can accurately estimate the battery SOC with a
mean absoluteerrorabout0.74%and amaximum errorlessthan3.1%,
which are lower than that of non-optimal AGNO methods.
Robustness of the OAGNO algorithm against factors, including initial
SOC error, current noise and different driving cycles are further
investigated, and results indicate that the proposed OAGNO always
performs better compared with the non-optimal AGNO approaches.

1.3. Organization of the paper

The rest of this paper is organized as follows. Section 2
introduces the 2nd-order battery model and the identification of
its parameters. In Section 3, detail of the optimal adaptive gain
nonlinear observer for SOC estimation is presented. Section 4
illustrates the experimental configuration and verification of the
proposed method. Finally, the paper is summarized in Section 5.

2. Battery modeling

2.1. Definition of SOC

Generally, SOC of the battery is defined as a ratio of the
remaining capacity to its nominal capacity formulated as

SOCðtÞ ¼ SOCðt0Þ � 1
Cn

Z t

t0
hciLðtÞdt ð1Þ

where SOC(t) and SOC(t0) represent the current SOC at time t and
initial SOC at time t0 respectively, Cn denotes the nominal capacity
of the battery, hc is the Coulombic efficiency defined as the ratio of
the discharging capacity to the charging capacity, iL represents the
current flowing through the load which is positive for discharging
and negative for charging.

Based on Eq. (1), the SOC estimation accuracy is affected by
factors summarized as follows

(1) Inaccurate initial SOC: It is difficult to get an accurate initial
SOC due to self-discharging, voltage recovering and nonlinear
OCV-SOC relationship.

(2) Inaccurate discharging capacity: Usually, the practical dis-
charging capacity Cd is not equal to the nominal capacity Cn as it
varies with current rate, ambient temperature and battery
degeneration, etc.

(3) Inaccurate measurement: iL cannot be accurately measured in
practice due to electromagnetic interference and sensor drift.

(4) Inaccurate Coulombic efficiency: Similarly with Cd, hc varies
with current rate, ambient temperature and battery degenera-
tion, so it cannot be obtained online.

As open-loop methods, the non-model based estimation
approaches cannot correct errors caused by above factors.
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