
Invited Review

Packing and covering with linear programming: A survey

Cédric Bentz a, Denis Cornaz b,⇑, Bernard Ries b

a CEDRIC, Conservatoire National des Arts et Métiers, 292 Rue St. Martin, 75141 Paris Cedex 03, France
b LAMSADE, Université Paris-Dauphine & CNRS, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

a r t i c l e i n f o

Article history:
Received 6 January 2012
Accepted 22 November 2012
Available online 5 December 2012

Keywords:
Linear programming
Covering
Packing
Polyhedra
Min–max relation
Hypergraph

a b s t r a c t

This paper considers the polyhedral results and the min–max results on packing and covering problems
of the decade. Since the strong perfect graph theorem (published in 2006), the main such results are
available for the packing problem, however there are still important polyhedral questions that remain
open. For the covering problem, the main questions are still open, although there has been important pro-
gress. We survey some of the main results with emphasis on those where linear programming and graph
theory come together. They mainly concern the covering of cycles or dicycles in graphs or signed graphs,
either with vertices or edges; this includes the multicut and integral multiflow problems.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Although linear programming plays an important role in the de-
sign of efficient heuristics and exact algorithms for the packing and
covering problems, we restrict this survey to the polyhedral and
min–max results. For algorithmic aspects, we refer to the survey
by Caprara et al. [19] and, for practical applications, to Balas [4].
Actually, Conforti et al. [29] already presented a survey on polyhe-
dral and min–max aspects of packing–covering. So here, we will fo-
cus on the main results of the decade, that is, that appeared after
2001. We also refer to the book by Cornuéjols [31], to the survey
by Cornuéjols and Guenin [32], and to the book by Schrijver [72].
A survey on packing–covering more concerned with graph theory
is [10]. Surveys more concerned with approximation are [71,40].

The linear programming approach for solving a combinatorial
optimization problem starts by modeling it as an integer program
zIP :¼maxfcT x : x 2 P \ Zng where P ¼ fx 2 Rn : Ax 6 b; x P 0g, A,
b and c being respectively a rational matrix with m rows and n col-
umns, an m-vector and an n-vector. Then we consider its linear
relaxation zLP :¼maxfcT x : x 2 Pg as well as its dual
wLP :¼ minfyT b : y 2 Dg where D ¼ fy 2 Rm : yT A P cT ; y P 0g. Fi-
nally we obtain the integer dual wIP :¼minfyT b : y 2 D \ Zmg of
zIP . We will suppose throughout the paper that both integer linear
programs admit feasible solutions. Then we obtain
zIP 6 zLP ¼ wLP 6 wIP where zLP ¼ wLP follows from the duality theo-
rem of linear programming.

Notice that we abuse notation and use the same symbol for a
linear program and its optimal value. The equality zIP ¼ zLP is
equivalent to the fact that zLP admits an integer optimal solution.
In this case, wLP does not necessarily admit an integer optimal solu-
tion, which makes a crucial difference since zIP may be easy to solve
while wIP is not. Of course, the same holds if we exchange the role
of zLP and wLP .

If zIP < zLP , more inequalities can be added to P without chang-
ing the value zIP whatever the objective function cTx was. Such
inequalities are said to be valid. Since it is easier to determine zLP

than zIP , this approach is interesting if we succeed in decreasing
zLP so that zIP ¼ zLP . For instance, if A is the 3 � 3 matrix with 0’s
on the diagonal and 1’s elsewhere, and b is the all-one 3-vector,
then the inequality 1Tx 6 1 is valid. Furthermore, adding it to P,
we obtain zIP ¼ zLP for all c (since the only fractional extreme point
of P, namely 1

2 ;
1
2 ;

1
2

� �
, is cut off).

A polyhedral result concerns the equality zIP ¼ zLP for all c. Then
zLP always admits an integer optimal solution and P is called an
integer polyhedron [41]. A min–max result concerns the equality
zIP ¼ wIP for some or for all c. Actually, if wLP ¼ wIP for all integer
vectors c, then zIP ¼ zLP for all c, and then P is said to be totally dual
integral (TDI, for short). So TDIness implies integrality, but the con-
verse is not necessarily true. If P \ {l 6 x 6 u} is TDI for all l and u,
then P is said to be box-TDI.

From now on, we let A :¼ AðHÞ and H :¼ HðAÞ be respectively a
0–1 matrix and a hypergraph such that A is the hyperedge–vertex
incidence matrix of H (that is, the vertex set VðHÞ of H is in 1-to-1
correspondence with the set of columns of A and the hyperedge
set EðHÞ of H is in 1-to-1 correspondence with the set of rows of A
where each row is the 0–1 characteristic vector of its corresponding
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hyperedge). A subset T # VðHÞ is a vertex cover ofH if each e 2 EðHÞ
contains at least one element in T. A subset S # VðHÞ is a stable set of
H if no hyperedege contains more than one vertex in S. Throughout
the paper, w denotes an n-vector which associates a weight to every
vertex of H.

The packing problem consists in finding a maximum-weight sta-
ble set of H, that is determining an optimal solution of the integer
program awðHÞ, defined below together with its relaxation
a�wðHÞ ¼ q�wðHÞ and its integer dual qwðHÞ:

awðHÞ :¼ maxfwT x : Ax 6 1; x P 0; x 2 ZVðHÞg 6 maxfwT x : Ax

6 1; x P 0; x 2 RVðHÞg :¼ a�wðHÞ ¼minf1T y : AT y P w; y

P 0; y 2 REðHÞg :¼ q�wðHÞ 6 minf1T y : AT y P w; y P 0; y

2 ZEðHÞg :¼ qwðHÞ

The covering problem consists in finding a minimum-weight vertex
cover of H, that is determining swðHÞ defined below together with
its relaxation s�wðHÞ ¼ m�wðHÞ and its integer dual mwðHÞ:

swðHÞ :¼minfwT x : Ax P 1; x P 0; x 2 ZVðHÞgP minfwT x : Ax

P 1; x P 0; x 2 RVðHÞg :¼ s�wðHÞ ¼maxf1T y : AT y 6 w; y

P 0; y 2 REðHÞg :¼ m�wðHÞP maxf1T y : AT y 6 w; y P 0; y

2 ZEðHÞg :¼ mwðHÞ

When w = 1, we simply write aðHÞ; a�ðHÞ and so on. For the pack-
ing/covering problem we may assume, without loss of generality,
that w is nonnegative. Moreover we may assume, without loss of
generality, that H has no isolated vertices and that no hyperedge
contains another hyperedge. Thus EðHÞ suffices to define H; in this
case H is called a clutter and A a clutter-matrix.

Many well-known theorems in combinatorial optimization are
min–max packing–covering relations. See for instance [32] for an
accessible tutorial on integrality in linear programs modeling cov-
ering problems (see also the books [31,72]). Let us consider some
examples. First, if H ¼ G is a graph, then K}onig’s theorem states
that sðHÞ ¼ mðHÞ if G is bipartite. The weighted version of this re-
sult, known as Egerváry’s theorem, states that swðHÞ ¼ mwðHÞ for
all w if and only if G is bipartite. Galai’s identities give
awðHÞ ¼ qwðHÞ for all w if and only if G is bipartite. If H is a hyper-
graph such that VðHÞ is the edge set of some graph G, s and t are
two distinct vertices of G, and EðHÞ is the set of st-paths of G, then
Menger’s theorem states that sðHÞ ¼ mðHÞ. The weighted version of
this result, that is swðHÞ ¼ mwðHÞ for all nonnegative integral w, is
the max-flow/min-cut theorem. If H is a hypergraph such that
VðHÞ is the vertex set of a graph G and EðHÞ is the set of maximal
stable sets of G, then awðHÞ ¼ qwðHÞ for all 0–1 valued w is equiv-
alent to the fact that the clique number x(H) is equal to the chro-
matic number v(H) for every induced subgraph H of G, which
means exactly that G is a perfect graph. It is important here to
ask equality, not only for G, but for all its induced subgraphs as
well, otherwise we maytake any graph G and add a big clique to
obtain x(G) = v(G). More generally, if sðHÞ ¼ mðHÞ for a class of
hypergraphsH closed under taking induced sub-hypergraphs, then
swðHÞ ¼ mwðHÞ for any 0–1 valued w.

The min–max relation may only hold for a small class of hyper-
graphs although a polyhedral result exists for a large class with an-
other formulation. A forest in a graph G can be seen as the
complement of a vertex cover in a hypergraph H, where VðHÞ is
the edge set of G and EðHÞ is the set of cycles of G. Note that, for
such a hypergraph H, if G is the simple graph with four vertices
and five edges, then sðHÞ ¼ 2 > 3=2 ¼ s�ðHÞ. Edmonds’ forest poly-
tope theorem states that if we consider the linear program wLP ob-
tained by adding to s�wðHÞ some valid inequalities, namelyP

e2EðUÞxe P jEðUÞj � jUj þ 1 for each nonempty U # V(G), then

one has swðHÞ ¼ wLP for all graphs G (and for all w). (The validity
of the inequalities follows from the fact that a forest has at most
jUj � 1 edges in the set E(U) of edges induced by U.) A matching
in a graph G can be seen as a stable set in a hypergraph H with
VðHÞ ¼ EðGÞ and EðHÞ the set of the stars of G. So K}onig–Egerváry’s
theorem gives awðHÞ ¼ qwðHÞ with G being bipartite. But if G is for
instance a triangle, we have aðHÞ ¼ 1 < 3=2 ¼ a�ðHÞ. Edmonds’
matching polytope theorem states if we add to a�wðHÞ the valid
inequalities

P
e2EðUÞxe 6 bjUj=2c for each set U # V(G) containing

an odd number of vertices, then we obtain a linear program zLP sat-
isfying awðHÞ ¼ zLP for all graphs G and for all weights w. Actually,
both linear systems, for forests and matchings, are TDI and even
box-TDI for the forests.

Since 2006, thanks to the strong perfect graph theorem [26], the
0–1 matrices satisfying awðHÞ ¼ a�wðHÞ or awðHÞ ¼ qwðHÞ are well
described, and can be recognized easily. This closes Berge’s conjec-
ture from 1960 (see Section 3.1). Concerning polyhedral results of
the type awðHÞ ¼ zLP , there has been interesting progress for a sub-
class of claw-free graphs, namely quasi-line graphs [27,42] (see
Section 3.2).

Concerning the covering problem, there is not even a conjecture
for a characterization of 0–1 matrices such that swðHÞ ¼ s�wðHÞ or
swðHÞ ¼ mwðHÞ. However, for binary hypergraphs (see Section 2.6),
those with swðHÞ ¼ mwðHÞ have been characterized by Seymour in
[77], and there is a conjecture of Seymour for those with
swðHÞ ¼ s�wðHÞ that is still open (since 1977), but has been partially
solved in several ways, e.g. in 2002 by Cornuéjols and Guenin [33],
see also [32,50,54]. A related result is the generalization of the
four-color theorem to graphs containing no odd minor isomorphic
to K5 [58] (see Section 3.3). Concerning the hypergraphs without
the binary property, there have been interesting results for the cy-
cle–vertex and for the vertex–cycle incidence matrices in graphs or
digraphs, and also for path/tree–edge incidence matrices
[2,18,22,23,37–39,55]. A conjecture of Gallai from 1963 about cov-
ering vertices with dicycles and the maximum cardinality of a sta-
ble set in a strongly connected digraph has been solved in 2007 and
there is a simple and very interesting proof based on total dual uni-
modularity [13,21,76].

Our survey is organized as follows. In Section 2, we recall the
fundamental definitions and results that are needed to under-
stand the new results of the decade. In Section 3, we survey the
results concerning the packing problem. In Section 4, we present
results concerning odd cycles and odd paths. Section 5 adresses
multiflow problems. Section 6 deals with covering cycles in
graphs. Finally, in Section 7 we present the results about dicycles
in digraphs.

2. The general theory

2.1. Perfectness, idealness and Mengerianity

The most natural polyhedral and min–max questions for the
packing–covering problem are related to the following properties:

� For the packing problem, A and H are called perfect if (a)–(c),
which are surprisingly equivalent (see [31,72]), hold.
(a) awðHÞ ¼ a�wðHÞ for any 0–1 vector w,
(b) awðHÞ ¼ qwðHÞ for any integer vector w,
(c) EðHÞ ¼ fðmaximalÞ cliques ofGg for some perfect graph G.

� For the covering problem, we obtain the following (see [32]):
properties (i)–(ii) are equivalent; furthermore, (iii) trivially
implies (iv) which implies (i)–(ii) and trivially (v); finally (v)
trivially implies (vi).

(i) swðHÞ ¼ s�wðHÞ for any vector w (H and A are called ideal),
(ii) swðHÞ ¼ s�wðHÞ for any 0–1–1 vector w,
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