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a  b  s  t  r  a  c  t

We  analyze  the  asymptotic  behavior  of the  impedance  (or  immittance)  spectroscopy  response  of  an
electrolytic  cell  in a finite-length  situation  obtained  from  the  Poisson-Nernst-Planck  (PNP)  diffusional
model  and  extensions  by taking  into  account  different  surface  effects.  The  analysis  starts  with  the  case
characterized  by perfect  blocking  electrodes  and proceeds  by  considering  non-blocking  conditions  on
electrodes  surface.  We  argue  that the  imaginary  part  of  the  impedance  may  be  directly  related  to  the
boundary  condition  on  the  electrode  surface,  such  as charge  accumulation  and/or  transfer  by  electro-
chemical  reaction  or adsorption-desorption  processes.  We  also  compare  the  theoretical  predictions  with
experimental  data  obtained  for a weak  electrolytic  solution  of  KClO3.

© 2016  Published  by Elsevier  Ltd.

1. Introduction

The continuous research and development of state-of-art mate-
rials and their electrochemical properties is a burgeoning area of
science. It has contribute to a considerable progress in batteries
[1–4], fuel cells [5–9], colloidal systems [10–13], oxygen-separation
membranes [14,15], electrochemical sensors, functional polymers
and biological tissues [16–19]. In this context, among the character-
ization methods often used, the impedance spectroscopy technique
is quite popular. This is mainly due to the possibility of obtain-
ing results related to complex variables (such as mass transfer and
chemical reaction rates) via simple measurements.

Despite the deviations between experimental data and theoret-
ical predictions, results from impedance spectroscopy are usually
investigated in the framework of the Poisson–Nernst–Planck (PNP)
model and/or equivalent circuits. These disagreements are espe-
cially remarkable in the low frequency limit, where the PNP and
equivalent circuits with simple elements predict an asymptotic
impedance Z characterized by a power-law dependence in the
frequency ω with a unitary exponent (i.e., Z∼1/(iω)) but the exper-
imental data usually exhibit a different power-law regime. These
discrepancies are, therefore, strong motivation for investigating
extensions/generalizations of the PNP model as well as of the equiv-
alent circuits. For the PNP model, an important possibility is to
consider that the diffusive dynamics of the ions is anomalous, which
can be done via fractional derivatives [20]. Another relevant aspect
to consider in the PNP model is the inherent complexity of the
surface effects, which can be taken into account by generalizing

the boundary conditions [21]. Regarding equivalent circuits, a typ-
ical extension is to use constant phase elements (CPE), in order to
account for surface polarization effects [22–24].

In order to achive a suitable description for impedance spec-
troscopy data, it is crucial to understand the behavior of these
generalized models in insightful situations, a task that has not
been accomplished yet. An example is the low frequency limit,
which is directly connected to the surface effects. Thus, one
can find relationships between these behavior of the models
and low frequency-relevant experimental aspects such as charge
accumulation, charge transfer by electrochemical reaction, or
adsorption–desorption processes. In order fill this gap, we  devote
this work to investigate the asymptotic behavior of the impedance
calculated from extensions of the PNP models in the low fre-
quency limit. We  start by considering the case of perfect blocking
electrodes, followed by the cases characterized by non-blocking
electrodes. The influence of the physical chemistry properties of the
model (such as mobility and number of particles) on the electrical
response is obtained and compared with experimental data. These
analyzes are explored in the Sec. 2 and 3, while the discussions and
conclusions are presented in Sec. 4.

2. PNP Impedance Model and Boundary Conditions

We  start by reviewing the Poisson-Nernst-Planck (PNP)
diffusional model that is usually applied to describe the elec-
trical response. We  consider this model subjected to perfect
blocking boundary, i.e.,  J±

(
±d/2, t

)
= 0, where J± (z, t) is the
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drift-diffusion current density related to the positive (+) and neg-
ative (−) ions, with the electrodes placed at the positions z = ± d/2.
The PNP model is characterized by the continuity equation

∂
∂t
n±(z, t) = − ∂

∂z
J±(z, t), (1)

in connection with

J±(z, t) = −D±
∂
∂z
n±(z, t) ∓ qD±

kBT
n±(z, t)

∂V(z, t)
∂z

,  (2)

where D+ = D− = D  is the diffusion coefficient (the same for pos-
itive and negative ions), V(z, t) is the effective electric potential
across a sample of thickness d, kB is the Boltzmann constant, and
T is the absolute temperature. Furthermore, the potential V(z, t)
satisfies the Poisson’s equation

∂2

∂z2
V(z, t) = −q

ε
[n+(z, t) − n−(z, t)] , (3)

where ε is the dielectric coefficient of the medium (measured in
ε0 units). At this point it is worth mentioning that other models
have also been employed for describing the electrical response of
systems. Examples include the Debye-Falkenhagen model [25–27]
(that is related to solving a partial differential equation for the
potential) and models based on equivalent circuits such as the
Randles-Ershler equivalent circuit [28,29].

We can investigate the electrical response of an electrolytic cell
by solving these equations. To do so, a periodic potential with a very
small amplitude is usually assumed to drive the system. This corre-
sponds to the AC small-signal limit and produce a linear response of
the system. Under these assumptions and after some calculations,
we obtain the following expression for the impedance

ZB = Z̄
iˇ2 

[
1
ˇ

tanh
(
Mˇ

)
+ iM 

]
, (4)

with

Z̄ = 2�D
ωDεS

and  ̌ =
√

1 + i  . (5)

Here, �D =
√
εkBT/(2Nq2) is the Debye’s screening length and S is

the electrode area;   = ω/ωD, M = d/(2�D), and ωD = D/�2
D are

constants. Notice that Eq. (4) corresponds to a linear response of
the system and connects electric quantities with physical-chemical
parameters.

We now focus on the asymptotic limit for low frequency of
Eq. (4), where the diffusion and surface effects related to the
dynamics of the electrolyte particles play an important role. In this
limit, where   → 0 (i.e., ω → 0), we have that 1/ˇ  ∼ 1 − i /2 and can
consider d/�D � 1, implying that tanh(Mˇ)∼1 (see Ref. [30] for
more details). Under these assumptions, the main contributions
for the real (RB = Re(Z))  and imaginary (XB = Im(Z)) parts of the
impedance are

RB ≈ �2
Dd

SDε ≈ const (6)

and

XB ≈ −2
�D

ωDSε 
, (7)

where the B subscript refers to the perfect blocking boundary con-
dition (see the Appendix A for additional details).

Eqs. (6) and (7) essentially show that RB and XB exhibit a resis-
tive and capacitive behavior. The resistive behavior is connected to
the bulk effects. On the other hand, the capacitive behavior reflects
the boundary conditions assumed on the surface of the electrodes,
which only take in account charge accumulation and do not con-
sider other effects such as adsorption–desorption processes and/or

Fig. 1. The behavior of the real (R = Re(Z)) and imaginary (X = Im(Z)) parts
of  Eqs. (4), (8), and (9) is illustrated. For simplicity, we have considered D  =
8  × 10−9m2s−1, �D = 7.61 × 10−8m, � = 80�0, q = 1.6 × 10−19C, S = 3.14 × 10−4m2,
d  = 10−3m,  �CJ = 5 ×10−8ms−1, �O = 2 ×109(V m s)−1. We  also show red dashed lines
as  a guide for the asymptotic behavior exhibited by the impedance.

charge transfer. These behaviors are illustrated in Fig. 1, where the
dependence of Eq. (4) on the frequency is shown.

At this point, it is very illustrative to perform a comparison
with experimental data to comprehend the range of applicability of
Eq. (4). A simple experimental scenario for the electrical response
obtained from a weak electrolytic solution of KClO3 (≈2 ×10−3 Mol
L−1) in Milli– Q deionized water (see Ref. [31,32] for more details
on the experimental setup) is shown in Fig. 2 for the electrical
impedance. It is evident that the PNP model with perfect blocking
boundary conditions is not suitable to describe these experimental
data in all range of frequencies. Notice, for instance, that the behav-
ior the experimental data is not purely capacitive (Z ∝ 1/(iω)) as
indicated by the dashed line in Fig. 2, a behavior not predicted by
Eq.(4).

The PNP model has also been solved with different bound-
ary conditions on the surfaces such as the Chang–Jaffe [33]
(J±

(
±d/2, t

)
= ± �CJ n±

(
±d/2, t

)
) and the Ohmic [34]

(J±
(
±d/2, t

)
= �O E

(
±d/2, t

)
). These boundary conditions are

related to the conduction current across the electrode, i.e.,  charge
transfer from the electrolyte to the electrode by electrochemical
reactions. Under these hypotheses, the impedances for an elec-
trolytic cell are given by

ZCJ = Z̄
M  ̌ − i

[
1 + MH

(
1 + i 

)]
tanh

(
Mˇ

)
ˇ2

{
  ̌ − iH

(
1 + i 

)
tanh

(
Mˇ

)} , (8)

and

ZO = 1
ˇ2

Z̄M
[

1 − i
1 −  q

M
(
  − i q

)
ˇ

tanh
(
Mˇ

)]
, (9)
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